Intelligent Energy-Efficient Triggering of Geolocation Fix Acquisitions Based on Transitions between Activity Recognition States

  • Thomas Phan
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 130)


Location-based applications (LBAs) running on smartphones offer features that leverage the user’s geolocation to provide enhanced services. While there exist LBAs that require continuous geolocation tracking, we instead focus on LBAs such as location-based reminders or location-based advertisements that need a geolocation fix only at rare points during the day. Automatically and intelligently triggering geolocation acquisition just as it is needed for these types of applications produces the tangible benefit of increased battery life. To that end, we implemented a scheme to intelligently trigger geolocation fixes only on transitions between specific modes of transportation (such as driving, walking, and running), where these modes are detected on the smartphone using a low-power, high-resolution activity recognition system. Our experiments show that this approach consumes little power (approximately 225 mW for the activity recognition system) and correctly triggers geolocation acquisition at transitional moments with a median delay of 9 seconds from ground-truth observations. Most significantly, our system performs 41x fewer acquisitions than a competitive accelerometer-assisted binary classification scheme and 243x fewer than continuous tracking over our collected data set.


Activity Recognition Transition Manager Continuous Tracking Smoothing Window Activity Recognition System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdesslem, F., Philips, A., Henderson, T.: Less is More: Energy-Efficient Mobile Sensing with SenseLess. In: Proceedings of ACM MobiHeld (2009)Google Scholar
  2. 2.
    Apple, Inc. “iOS Siri,”
  3. 3.
    Azizyan, M., Constandache, I., Choudhury, R.: SurroundSense: Mobile Phone Localization via Ambience Fingerprinting. In: Proceedings of ACM MobiCom (2009)Google Scholar
  4. 4.
    Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Chawathe, Y., LaMarca, A., Krumm, J.: Accuracy Characterization for Metropolitan-Scale Wi-Fi Localization. In: Proceedings of ACM MobiSys (2005)Google Scholar
  6. 6.
    Cheverst, K., Davies, N., Mitchell, K., Friday, A.: Experiences of Developing and Deploying a Context-Aware Tourist Guide: The GUIDE Project. In: Proceedings of ACM MobiCom (2000)Google Scholar
  7. 7.
    Consolvo, S., McDonald, D., Toscos, T., Chen, M., Froehlich, J., Harrison, B., Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., Smith, I., Landay, J.: Activity sensing in the wild: a field trial of ubifit garden. In: Proc. of ACM CHI (2005)Google Scholar
  8. 8.
    Constandache, I., Gaonkar, S., Sayler, M., Choudhury, R., Cox, L.: EnLoc: Energy-Efficient Localization for Mobile Phones. In: Proceedings of IEEE Infocom Mini-Conference (2009)Google Scholar
  9. 9.
    Dousse, O., Eberle, J., Mertens, M.: Place Learning via Direct WiFi Fingerprint Clustering. In: Proceedings of IEEE MDM (2012)Google Scholar
  10. 10.
    Endomondo application,
  11. 11.
    Fang, S., Zimmerman, R.: EnAcq: Energy-efficient GPS Trajectory Data Acquisition Based on Improved Map Matching. In: Proc. of ACM SIGSPATIAL (2011)Google Scholar
  12. 12.
  13. 13.
  14. 14.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)Google Scholar
  15. 15.
    Huỳnh, T., Blanke, U., Schiele, B.: Scalable recognition of daily activities with wearable sensors. In: Hightower, J., Schiele, B., Strang, T. (eds.) LoCA 2007. LNCS, vol. 4718, pp. 50–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Kim, D., Kim, Y., Estrin, D., Srisastava, M.: SensLoc: Sensing Everyday Places and Paths using Less Energy. In: Proceedings of ACM SenSys (2010)Google Scholar
  17. 17.
    Kjaergaard, M., Langdal, J., Godsk, T., Toftkjaer, T.: EnTracked: Energy-Efficient Robust Position Tracking for Mobile Devices. In: Proceedings of ACM MobiSys (2009)Google Scholar
  18. 18.
    Kwapisz, J., Weiss, G., Moore, S.: Activity Recognition Using Cell Phone Accelerometers. In: Proceedings of SensorKDD (2010)Google Scholar
  19. 19.
    Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Lin, K., Kansal, A., Lymberopoulos, D., Zhao, F.: Energy-accuracy trade-off for continuous mobile device location. In: Proceedings of ACM MobiSys (2010)Google Scholar
  21. 21.
    Liu, J., Priyantha, B., Hart, T., Ramos, H., Loureiro, A., Wang, Q.: Energy Efficient GPS Sensing with Cloud Offloading. In: Proc. of ACM SenSys (2012)Google Scholar
  22. 22.
    Lu, H., Yang, J., Liu, Z., Lane, N., Choudhury, T., Campbell, A.: The Jigsaw Continuous Sensing Engine for Mobile Phone Applications. In: Proceedings of ACM SenSys (2010)Google Scholar
  23. 23.
    Miluzzo, E., Lane, N., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S., Zheng, X., Campbell, A.: Sensing Meets Mobile Social Networks: The Design, Implementation and Evaluation of the CenceMe Application. In: Proceedings of ACM SenSys (2008)Google Scholar
  24. 24.
    Mizell, D.: Using gravity to estimate accelerometer orientation. In: Proceedings of ISWC (2003)Google Scholar
  25. 25.
    Nath, S.: ACE: Exploiting Correlation for Energy-Efficient and Continuous Context Sensing. In: Proceedings of ACM MobiSys (2012)Google Scholar
  26. 26.
    Ofstad, A., Nicholas, E., Szcodronski, R., Choudhury, R.: AAMPL: Accelerometer Augmented Mobile Phone Localization. In: Proceedings of ACM MELT (2008)Google Scholar
  27. 27.
    Oshin, T., Poslad, S., Ma, A.: Improving the Energy-Efficiency of GPS-based Location Sensing Smartphone Applications. In: Proc. of IEEE TrustCom (2012)Google Scholar
  28. 28.
    Paek, J., Kim, J., Govindan, R.: Energy-Efficient Rate-Adaptive GPS-based Positioning for Smartphones. In: Proceedings of ACM MobiSys (2010)Google Scholar
  29. 29.
    Pathak, A., Hu, C., Zhang, M.: Where is the Energy Spent Inside My App? Fine Grained Energy Accounting on Smartphones using Eprof. In: Proceedings of EuroSys (2012)Google Scholar
  30. 30.
    Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)Google Scholar
  31. 31.
    Ravi, N., Dandekar, N., Mysore, P., Littman, M.: Activity recognition from accelerometer data. In: Proceedings of IAAI (2005)Google Scholar
  32. 32.
    Reardon, M.: Location information to make mobile ads more valuable. news (April 15, 2013),
  33. 33.
    Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Transactions on Sensor Networks (2010)Google Scholar
  34. 34.
    Shafer, I., Chang, M.: Movement Detection for Power-Efficient Smartphone WLAN Localization. In: Proceedings of ACM MSWiM (2010)Google Scholar
  35. 35.
  36. 36.
    Trapster application,
  37. 37.
    Wang, Y., Lin, J., Annavaram, M., Jacobson, Q., Hong, J., Krishamachari, B., Sadeh, N.: A Framework of Energy Efficient Mobile Sensing for Automatic User State Recognition. In: Proceedings of ACM MobiSys (2009)Google Scholar
  38. 38.
    Waze application,
  39. 39.
    Zhuang, Z., Kim, K.-H., Singh, J.: Improving Energy Efficiency of Location Sensing on Smartphones. In: Proceedings of ACM MobiSys (2010)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2014

Authors and Affiliations

  • Thomas Phan
    • 1
  1. 1.Samsung Research America - Silicon ValleySan JoseUSA

Personalised recommendations