A Cloudlet-Based Proximal Discovery Service for Machine-to-Machine Applications

  • Jonas Michel
  • Christine Julien
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 130)


Many of today’s applications attempt to connect mobile users with resources available in their immediate surroundings. Existing approaches for discovering available resources are either centralized, providing a single point of lookup somewhere in the cloud or ad hoc, requiring mobile devices to directly connect to other nearby devices. In this paper, we explore an approach based on cloudlets, marrying these two approaches to reflect both the proximity requirements of the applications and the dynamic nature of the resources. We present the design and implementation of a cloudlet-based proximal discovery service, solving key technical challenges along the way. We then use real world data traces to demonstrate, evaluate, and benchmark our service and compare it to a completely centralized approach. We find that, in supporting highly localized queries, our service outperforms the centralized approach without significantly affecting the quality of the discovery results.


location-based discovery pervasive computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer Net. 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Banerjee, N., Agarwal, S., Bahl, P., Chandra, R., Wolman, A., Corner, M.: Virtual compass: Relative positioning to sense mobile social interactions. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 1–21. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., Leung, V.: Body area networks: A survey. Mobile Net. and App. 16(2), 171–193 (2011)CrossRefGoogle Scholar
  4. 4.
    Constandache, I., Bao, X., Azizyan, M., Choudhury, R.R.: Did you see Bob?: human localization using mobile phones. In: Proc. of MobiCom (2010)Google Scholar
  5. 5.
    Das, S., Pucha, H., Hu, Y.: Performance comparison of scalable location services for geographic ad hoc routing. In: Proc. of INFOCOM (2005)Google Scholar
  6. 6.
    Demirbas, M., Ferhatosmanoglu, H.: Peer-to-peer spatial queries in sensor networks. In: Proc. of P2P (2003)Google Scholar
  7. 7.
    Fiege, L., Gärtner, F.C., Kasten, O., Zeidler, A.: Supporting mobility in content-based publish/subscribe middleware. In: Endler, M., Schmidt, D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 103–122. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans. Internet Technol. 2(2), 115–150 (2002)CrossRefGoogle Scholar
  9. 9.
    Galpin, I., Brenninkmeijer, C., Gray, A., Jabeen, F., Fernandes, A., Paton, N.: Snee: a query processor for wireless sensor networks. Dist. and Parallel Databases 29, 31–85 (2011)CrossRefGoogle Scholar
  10. 10.
    Gambs, S., Killijian, M.-O., del Prado Cortez, M.N.: Show me how you move and I will tell you who you are. In: Proc. of SPRINGL (2010)Google Scholar
  11. 11.
    Goodchild, M.: Research Methods in Geography, 3rd edn., pp. 376–391. Wiley-Blackwell (2010)Google Scholar
  12. 12.
    Guinard, D., Vlad, T.: Towards the web of things: web mashups for embedded devices. In: Proc. of WWW (2009)Google Scholar
  13. 13.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proc. of SIGMOD (1984)Google Scholar
  14. 14.
    Huang, D., Zhang, X., Kang, M., Luo, J.: MobiCloud: Building secure cloud framework for mobile computing and communication. In: Proc. of SOSE (2010)Google Scholar
  15. 15.
    Huerta-Canepa, G., Lee, D.: A virtual cloud computing provider for mobile devices. In: Proc. of MCS (2010)Google Scholar
  16. 16.
    Kazemi, L., Shahabi, C.: Geocrowd: enabling query answering with spatial crowdsourcing. In: Proc. of SIGSPATIAL (2012)Google Scholar
  17. 17.
    Krumm, J., Hinckley, K.: The NearMe wireless proximity server. In: Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 283–300. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional query processor for sensor networks. In: Proc. of SIGMOD (2003)Google Scholar
  19. 19.
    Mayrhofer, R., Holzmann, C., Koprivec, R.: Friends Radar: Towards a private P2P location sharing platform. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011, Part II. LNCS, vol. 6928, pp. 527–535. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Minami, M., Fukuju, Y., Hirasawa, K., Yokoyama, S., Mizumachi, M., Morikawa, H., Aoyama, T.: DOLPHIN: A practical approach for implementing a fully distributed indoor ultrasonic positioning system. In: Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 347–365. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Mondal, A., Lifu, Y., Kitsuregawa, M.: P2PR-Tree: An R-Tree-based spatial index for peer-to-peer environments. In: Proc. of EDBT Workshops (2005)Google Scholar
  22. 22.
    Mottola, L., Picco, G.: Programming wireless sensor networks with logical neighborhoods. In: Proc. of InterSense (2006)Google Scholar
  23. 23.
    Mousavi, S.M., Rabiee, H., Moshref, M., Dabirmoghaddam, A.: MobiSim: A framework for simulation of mobility models in mobile ad-hoc networks. In: Proc. of WIMOB (2007)Google Scholar
  24. 24.
    Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. “big” web services: making the right architectural decision. In: Proc. of WWW (2008)Google Scholar
  25. 25.
    Peng, C., Shen, G., Zhang, Y., Li, Y., Tan, K.: BeepBeep: a high accuracy acoustic ranging system using cots mobile devices. In: Proc. of SenSys (2007)Google Scholar
  26. 26.
    Peuquet, D.: Making space for time: Issues in space-time data representation. GeoInform. 5, 11–32 (2001)CrossRefzbMATHGoogle Scholar
  27. 27.
    Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M.: CRAWDAD data set epfl/mobility (v. 2009-02-24) (2009), Downloaded from
  28. 28.
    Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S.J., Chong, S.: On the levy-walk nature of human mobility. IEEE/ACM Trans. Netw. 19(3), 630–643 (2011)CrossRefGoogle Scholar
  29. 29.
    Sacramento, V., Endler, M., Rubinsztejn, H., Lima, L., Goncalves, K., Nascimento, F., Bueno, G.: Moca: A middleware for developing collaborative applications for mobile users. IEEE Dist. Sys. Online 5(10), 1–14 (2004)CrossRefGoogle Scholar
  30. 30.
    Samimi, F.A., McKinley, P.K., Sadjadi, S.M.: Mobile service clouds: A self-managing infrastructure for autonomic mobile computing services. In: Keller, A., Martin-Flatin, J.-P. (eds.) SelfMan 2006. LNCS, vol. 3996, pp. 130–141. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Satoh, I.: Dynamic deployment of pervasive services. In: Proc. of ICPS (2005)Google Scholar
  32. 32.
    Satyanarayanan, M.: Mobile computing: the next decade. SIGMOBILE Mob. Comput. Commun. Rev. 15(2), 2–10 (2011)CrossRefGoogle Scholar
  33. 33.
    Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based cloudlets in mobile computing. IEEE Pervasive Computing 8(4), 14–23 (2009)CrossRefGoogle Scholar
  34. 34.
    Schiller, J., Voisard, A.: Location-Based Services. Morgan Kaufmann (2004)Google Scholar
  35. 35.
    Schmieg, A., Stieler, M., Jeckel, S., Kabus, P., Kemme, B., Buchmann, A.: pSense: Maintaining a dynamic localized peer-to-peer structure for position based multicast in games. In: Proc. of P2P (2008)Google Scholar
  36. 36.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: Proc. of SIGCOMM (2001)Google Scholar
  37. 37.
    Wu, X., Tavildar, S., Shakkottai, S., Richardson, T., Li, J., Laroia, R., Jovicic, A.: FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks. In: Proc. of Allerton (2010)Google Scholar
  38. 38.
    Ypodimatopoulos, P., Lippman, A.: Follow me: a web-based, location-sharing architecture for large, indoor environments. In: Proc. of WWW (2010)Google Scholar
  39. 39.
    Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-tolerant wide-area location and routing. Technical report, University of California at Berkeley, Berkeley, CA, USA (2001)Google Scholar
  40. 40.
    Ziotopoulos, A., de Veciana, G.: P2P network for storage and query of a spatio-temporal flow of events. In: Proc. of PerCom Workshops (2011)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2014

Authors and Affiliations

  • Jonas Michel
    • 1
  • Christine Julien
    • 1
  1. 1.Department of Electrical & Computer EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations