Lower Bounds on the Minimum Project Duration

  • Sigrid Knust
Part of the International Handbooks on Information Systems book series (INFOSYS)


In this chapter methods to calculate lower bounds on the minimum project duration (i.e. the makespan C max ) of the basic resource-constrained project scheduling problem \(\mathit{PS}\,\mid \,\mathit{prec}\,\mid \,C_{\mathit{max}}\) are presented. We distinguish between constructive and destructive lower bounds.


Lower bounds Makespan minimization Project scheduling Resource constraints 


  1. Artigues C, Demassey S, Néron E (2010) Resource-constrained project scheduling: models, algorithms, extensions and applications. Wiley, HobokenGoogle Scholar
  2. Baar T, Brucker P, Knust S (1999) Tabu search algorithms and lower bounds for the resource-constrained project scheduling problem. In: Voss S, Martello S, Osman I, Roucairol C (eds) Meta-heuristics: advances and trends in local search paradigms for optimization. Kluwer, Boston, pp 1–18CrossRefGoogle Scholar
  3. Baptiste P, Demassey S (2004) Tight LP bounds for resource constrained project scheduling. OR Spectr 26(2):251–262CrossRefGoogle Scholar
  4. Baptiste P, Le Pape C, Nuijten W (2001) Constraint-based scheduling: applying constraint programming to scheduling problems. International series in operations research & management science, vol 39. Kluwer, BostonGoogle Scholar
  5. Bianco L, Caramia M (2011) A new lower bound for the resource-constrained project scheduling problem with generalized precedence relations. Comput Oper Res 38(1):14–20CrossRefGoogle Scholar
  6. Brucker P, Knust S (2000) A linear programming and constraint propagation-based lower bound for the RCPSP. Eur J Oper Res 127(2):355–362CrossRefGoogle Scholar
  7. Brucker P, Knust S (2003) Lower bounds for resource-constrained project scheduling problems. Eur J Oper Res 149(2):302–313CrossRefGoogle Scholar
  8. Brucker P, Knust S (2012) Complex scheduling. Springer, BerlinCrossRefGoogle Scholar
  9. Carlier J, Néron E (2000) A new LP-based lower bound for the cumulative scheduling problem. Eur J Oper Res 127(2):363–382CrossRefGoogle Scholar
  10. Damay J, Quilliot A, Sanlaville E (2007) Linear programming based algorithms for preemptive and non-preemptive RCPSP. Eur J Oper Res 182(3):1012–1022CrossRefGoogle Scholar
  11. Demeulemeester E (1992) Optimal algorithms for various classes of multiple resource constrained project scheduling problems. Ph.D. dissertation, Katholieke Universiteit Leuven, Leuven, BelgiumGoogle Scholar
  12. Dorndorf U, Huy TP, Pesch E (1999) A survey of interval capacity consistency tests for time-and resource-constrained scheduling. In: Wȩglarz J (ed) Project scheduling. Kluwer, Boston, pp 213–238CrossRefGoogle Scholar
  13. Klein R, Scholl A (1999) Computing lower bounds by destructive improvement: an application to resource-constrained project scheduling. Eur J Oper Res 112(2):322–346CrossRefGoogle Scholar
  14. Kolisch R, Sprecher A (1997) PSPLIB - a project scheduling problem library: OR software - ORSEP operations research software exchange program. Eur J Oper Res 96(1):205–216.
  15. Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An exact algorithm for project scheduling with resource constraints based on a new mathematical formulation. Manage Sci 44(5):714–729CrossRefGoogle Scholar
  16. Möhring R, Schulz A, Stork F, Uetz M (2003) Solving project scheduling problems by minimum cut computations. Manage Sci 49(3):330–350CrossRefGoogle Scholar
  17. Néron E, Artigues C, Baptiste P, Carlier J, Damay J, Demassey S, Laborie P (2006) Lower bounds for resource constrained project scheduling problem. In: Perspectives in modern project scheduling. Springer, New York, pp 167–204Google Scholar
  18. Schutt A, Feydy T, Stuckey P, Wallace M (2011) Explaining the cumulative propagator. Constraints 16(3):250–282CrossRefGoogle Scholar
  19. Stinson J, Davis E, Khumawala B (1978) Multiple resource-constrained scheduling using branch and bound. AIIE Trans 10(3):252–259CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of OsnabrückOsnabrückGermany

Personalised recommendations