Advertisement

Lower Bounds on the Minimum Project Duration

  • Sigrid Knust
Chapter
Part of the International Handbooks on Information Systems book series (INFOSYS)

Abstract

In this chapter methods to calculate lower bounds on the minimum project duration (i.e. the makespan C max ) of the basic resource-constrained project scheduling problem \(\mathit{PS}\,\mid \,\mathit{prec}\,\mid \,C_{\mathit{max}}\) are presented. We distinguish between constructive and destructive lower bounds.

Keywords

Lower bounds Makespan minimization Project scheduling Resource constraints 

References

  1. Artigues C, Demassey S, Néron E (2010) Resource-constrained project scheduling: models, algorithms, extensions and applications. Wiley, HobokenGoogle Scholar
  2. Baar T, Brucker P, Knust S (1999) Tabu search algorithms and lower bounds for the resource-constrained project scheduling problem. In: Voss S, Martello S, Osman I, Roucairol C (eds) Meta-heuristics: advances and trends in local search paradigms for optimization. Kluwer, Boston, pp 1–18CrossRefGoogle Scholar
  3. Baptiste P, Demassey S (2004) Tight LP bounds for resource constrained project scheduling. OR Spectr 26(2):251–262CrossRefGoogle Scholar
  4. Baptiste P, Le Pape C, Nuijten W (2001) Constraint-based scheduling: applying constraint programming to scheduling problems. International series in operations research & management science, vol 39. Kluwer, BostonGoogle Scholar
  5. Bianco L, Caramia M (2011) A new lower bound for the resource-constrained project scheduling problem with generalized precedence relations. Comput Oper Res 38(1):14–20CrossRefGoogle Scholar
  6. Brucker P, Knust S (2000) A linear programming and constraint propagation-based lower bound for the RCPSP. Eur J Oper Res 127(2):355–362CrossRefGoogle Scholar
  7. Brucker P, Knust S (2003) Lower bounds for resource-constrained project scheduling problems. Eur J Oper Res 149(2):302–313CrossRefGoogle Scholar
  8. Brucker P, Knust S (2012) Complex scheduling. Springer, BerlinCrossRefGoogle Scholar
  9. Carlier J, Néron E (2000) A new LP-based lower bound for the cumulative scheduling problem. Eur J Oper Res 127(2):363–382CrossRefGoogle Scholar
  10. Damay J, Quilliot A, Sanlaville E (2007) Linear programming based algorithms for preemptive and non-preemptive RCPSP. Eur J Oper Res 182(3):1012–1022CrossRefGoogle Scholar
  11. Demeulemeester E (1992) Optimal algorithms for various classes of multiple resource constrained project scheduling problems. Ph.D. dissertation, Katholieke Universiteit Leuven, Leuven, BelgiumGoogle Scholar
  12. Dorndorf U, Huy TP, Pesch E (1999) A survey of interval capacity consistency tests for time-and resource-constrained scheduling. In: Wȩglarz J (ed) Project scheduling. Kluwer, Boston, pp 213–238CrossRefGoogle Scholar
  13. Klein R, Scholl A (1999) Computing lower bounds by destructive improvement: an application to resource-constrained project scheduling. Eur J Oper Res 112(2):322–346CrossRefGoogle Scholar
  14. Kolisch R, Sprecher A (1997) PSPLIB - a project scheduling problem library: OR software - ORSEP operations research software exchange program. Eur J Oper Res 96(1):205–216. http://www.om-db.wi.tum.de/psplib/
  15. Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An exact algorithm for project scheduling with resource constraints based on a new mathematical formulation. Manage Sci 44(5):714–729CrossRefGoogle Scholar
  16. Möhring R, Schulz A, Stork F, Uetz M (2003) Solving project scheduling problems by minimum cut computations. Manage Sci 49(3):330–350CrossRefGoogle Scholar
  17. Néron E, Artigues C, Baptiste P, Carlier J, Damay J, Demassey S, Laborie P (2006) Lower bounds for resource constrained project scheduling problem. In: Perspectives in modern project scheduling. Springer, New York, pp 167–204Google Scholar
  18. Schutt A, Feydy T, Stuckey P, Wallace M (2011) Explaining the cumulative propagator. Constraints 16(3):250–282CrossRefGoogle Scholar
  19. Stinson J, Davis E, Khumawala B (1978) Multiple resource-constrained scheduling using branch and bound. AIIE Trans 10(3):252–259CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of OsnabrückOsnabrückGermany

Personalised recommendations