Skip to main content

Heuristic Methods for the Resource Availability Cost Problem

  • Chapter
  • First Online:
Book cover Handbook on Project Management and Scheduling Vol.1

Part of the book series: International Handbooks on Information Systems ((INFOSYS))

Abstract

In this chapter, an Invasive Weed Optimization (IWO) algorithm for the resource availability cost problem is presented, in which the total cost of the (unlimited) renewable resources required to complete the project by a prespecified project deadline should be minimized. The IWO algorithm is a new search strategy, which makes use of mechanisms inspired by the natural behavior of weeds in colonizing and finding a suitable place for growth and reproduction. All algorithmic components are explained in detail and computational results for the RACP are presented. The procedure is also executed to solve the RACP with tardiness (RACPT), in which lateness of the project is permitted with a predefined penalty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballestín F (2007) A genetic algorithm for the resource renting problem with minimum and maximum time lags. In: Cotta C, van Hemert J (eds) EvoCOP 2007. Lecture notes in computer science, vol 4446. Springer, Heidelberg, pp 25–35

    Google Scholar 

  • Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project scheduling: notation, classification, models, and methods. Eur J Oper Res 112:3–41

    Article  Google Scholar 

  • Burgess A, Killebrew J (1962) Variation in activity level on a cyclic arrow diagram. J Ind Eng 2:76–83

    Google Scholar 

  • Demeulemeester E (1995) Minimizing resource availability costs in time-limited project networks. Manag Sci 41:1590–1598

    Article  Google Scholar 

  • Drexl A, Kimms A (2001) Optimization guided lower and upper bounds for the resource investment problem. J Oper Res Soc 52:340–351

    Article  Google Scholar 

  • Glover F, Laguna M, Marti R (2000) Fundamentals of scatter search and path relinking. Control Cybern 29:653–684

    Google Scholar 

  • Guldemond TA, Hurink JL, Paulus JJ, Schutten JMJ (2008) Time-constrained project scheduling. J Sched 11:137–148

    Article  Google Scholar 

  • Hartmann S, Briskorn D (2010) A survey of variants and extensions of the resource-constrained project scheduling problem. Eur J Oper Res 207:1–15

    Article  Google Scholar 

  • Herroelen W, De Reyck B, Demeulemeester E (1999) A classification scheme for project scheduling. In: Wȩglarz J (ed) Handbook of recent advances in project scheduling. Kluwer, Dordrecht, pp 1–26

    Google Scholar 

  • Hsu C-C, Kim D (2005) A new heuristic for the multi-mode resource investment problem. J Oper Res Soc 56:406–413

    Google Scholar 

  • Karimkashi S, Kishk A (2010) Invasive weed optimization and its features in electro-magnetics. IEEE Trans Antennas Propag 58:1269–1278

    Article  Google Scholar 

  • Kelley J Jr (1963) The critical-path method: resources planning and scheduling. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Kolisch R (1995) Project scheduling under resource constraints. Physica, Berlin

    Book  Google Scholar 

  • Kolisch R, Hartmann S (2006) Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur J Oper Res 174:23–37

    Article  Google Scholar 

  • Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource-constrained project scheduling problems. Manag Sci 41:1693–1703

    Article  Google Scholar 

  • Kreter S, Rieck J, Zimmermann J (2014) The total adjustment cost problem: applications, models, and solution algorithms. J Sched 17:145–160

    Article  Google Scholar 

  • Li K, Willis R (1992) An iterative scheduling technique for resource-constrained project scheduling. Eur J Oper Res 56:370–379

    Article  Google Scholar 

  • Mastor A (1970) An experimental and comparative evaluation of production line balancing techniques. Manag Sci 16:728–746

    Article  Google Scholar 

  • Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1:355–366

    Article  Google Scholar 

  • Möhring R (1984) Minimizing costs of resource requirements in project networks subject to a fixed completion time. Oper Res 32:89–120

    Article  Google Scholar 

  • Montgomery D (2005) Design and analysis of experiments. Wiley, Hoboken

    Google Scholar 

  • Neumann K, Zimmermann J (1999) Resource levelling for projects with schedule-dependent time windows. Eur J Oper Res 117:591–605

    Article  Google Scholar 

  • Nübel H (2001) The resource renting problem subject to temporal constraints. OR Spektrum 23:574–586

    Article  Google Scholar 

  • Pascoe T (1966) Allocation of resources: CPM. Revue Française de Recherche Opérationnelle 38:31–38

    Google Scholar 

  • Ranjbar M, Kianfar F, Shadrokh S (2008) Solving the resource availability cost problem in project scheduling by path relinking and genetic algorithm. Appl Math Comput 196:879–888

    Article  Google Scholar 

  • Rodrigues S, Yamashita D (2010) An exact algorithm for minimizing resource availability costs in project scheduling. Eur J Oper Res 206:562–568

    Article  Google Scholar 

  • Shadrokh S, Kianfar F (2007) A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty. Eur J Oper Res 181:86–101

    Article  Google Scholar 

  • Stinson J, Davis E, Khumawala B (1978) Multiple resource-constrained scheduling using branch-and-bound. AIIE Trans 10:252–259

    Article  Google Scholar 

  • Van Peteghem V, Vanhoucke M (2013) An artificial immune system algorithm for the resource availability cost problem. Flex Serv Manuf J 25:122–144

    Google Scholar 

  • Vanhoucke M, Coelho J, Debels D, Maenhout B, Tavares L (2008) An evaluation of the adequacy of project network generators with systematically sampled networks. Eur J Oper Res 187:511–524

    Article  Google Scholar 

  • Yamashita D, Armentano V, Laguna M (2006) Scatter search for project scheduling with resource availability cost. Eur J Oper Res 169:623–637

    Article  Google Scholar 

  • Yamashita D, Armentano V, Laguna M (2007) Robust optimization models for project scheduling with resource availability cost. J Sched 10:67–76

    Article  Google Scholar 

  • Zhang X, Wang Y, Cui G, Niu Y, Xu J (2009) Application of a novel IWO to the design of encoding sequences for DNA computing. Comput Math Appl 57:2001–2008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Van Peteghem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Van Peteghem, V., Vanhoucke, M. (2015). Heuristic Methods for the Resource Availability Cost Problem. In: Schwindt, C., Zimmermann, J. (eds) Handbook on Project Management and Scheduling Vol.1. International Handbooks on Information Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-05443-8_16

Download citation

Publish with us

Policies and ethics