Advertisement

Introduction to the Theory of Didactical Situations (TDS)

  • Michèle ArtigueEmail author
  • Mariam Haspekian
  • Agnès Corblin-Lenfant
Chapter
Part of the Advances in Mathematics Education book series (AME)

Abstract

The chapter briefly introduces the Theory of Didactical Situations (TDS) by referring to the data from Chap.  2. TDS provides a systemic framework for investigating teaching and learning processes in mathematics, and for supporting didactical design. The theory is structured around the notions of a-didactical and didactical situations and includes a corpus of concepts relevant for teaching and learning in mathematics classrooms.

Keywords

Theories Theory of didactical situations 

References

  1. Artigue, M. (1989). Ingénierie didactique. Recherches en Didactique des Mathématiques, 9(3), 281–308.Google Scholar
  2. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.CrossRefGoogle Scholar
  3. Artigue, M. (2008). Didactical design in mathematics education. In C. Winslow (Ed.), Proceedings from NORMA08 in Copenhagen 2008 (pp. 7–16). Rotterdam: Sense Publishers. https://www.sensepublishers.com/media/699-nordic-research-in-mathematics-education.pdf. Accessed 22 Oct 2013.
  4. Artigue, M. (2013). Didactic engineering in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education. Berlin/Heidelberg: Springer. (in press).Google Scholar
  5. Brousseau, G. (1980). Les échecs électifs en mathématiques dans l’enseignement élémentaire. Revue de laryngologie, otologie, rhinologie, 101(3–4), 107–131. http://guy-brousseau.com/1388/lesechecs-electifs-en-mathematiques-dans-l%E2%80%99enseignement-elementaire-1980. Accessed 22 Oct 2013.
  6. Brousseau, G. (1986). Fondements et méthodes de la didactique. Recherches en didactique des mathématiques, 7(2), 35–115.Google Scholar
  7. Brousseau, G. (1995). L’enseignant dans la théorie des situations didactiques (The teacher in the theory of didactical situations). In R. Noirfalise & M. J. Perrin-Glorian (Eds.), Actes de la VIIIe Ecole d’Eté de Didactique des Mathématiques (pp. 3–46). Clermont-Ferrand: IREM de Clermont-Ferrand. http://guy-brousseau.com/2319/l%E2%80%99enseignant-dans-la-theorie-theoriedes-situations-didactiques-1995/. Accessed 07 July 2014.
  8. Brousseau, G. (1997). Theory of didactical situations in mathematics: Didactique des Mathématiques, 1970–1990 (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Trans. & Eds.). Dordrecht: Kluwer.Google Scholar
  9. Brousseau, G. (2008). Research in mathematics education. In M. Niss (Ed.), Proceedings of ICME-10 (pp. 244–254). Denmark: IMFUFA, Department of Sciences, Systems and Models, Roslkilde University.Google Scholar
  10. Brousseau, G., & Warfield, V. (1999). The case of Gaël. Journal of Mathematical Behavior, 18(1), 1–46.CrossRefGoogle Scholar
  11. Duval, R. (1995). Semiosis et Noesis. Berne: Peter Lang.Google Scholar
  12. Guin, D., Ruthven, K., & Trouche, L. (Eds.). (2004). The didactic challenge of symbolic calculators. Dordrecht: Kluwer.Google Scholar
  13. Hersant, M., & Perrin-Glorian, M.-J. (2005). Characterization of an ordinary teaching practice with the help of the theory of didactic situations. Educational Studies in Mathematics, 59(1–3), 113–151.CrossRefGoogle Scholar
  14. Laborde, C., Perrin-Glorian, M.-J., & Sierpinska, A. (Eds.). (2005). Beyond the apparent banality of the mathematics classroom. New York: Springer.Google Scholar
  15. Lagrange, J.-B. (2005). Curriculum, classroom practices and tool design in the learning of functions through technology-aided experimental approaches. International Journal of Computers for Mathematics Learning, 10, 143–189.Google Scholar
  16. Margolinas, C. (1998). Le milieu et le contrat, concepts pour la construction et l’analyse de situations d’enseignement. In R. Noirfalise (Ed.), Analyse des pratiques enseignantes et didactique des mathématiques, Actes de l’Université d’Eté, La Rochelle. Clermont-Ferrand: IREM. http://halshs.archives-ouvertes.fr/halshs-00421845/fr. Accessed 22 Oct 2013.
  17. Margolinas, C. (2002). Situations, milieux, connaissances: Analyse de l’activité du professeur, cours. In J. L. Dorier et al. (Eds.), Actes de la 11ème Ecole d’Eté de Didactique des Mathématiques (pp. 141–157). Grenoble: La Pensée Sauvage. http://halshs.archives-ouvertes.fr/halshs-00421848/fr. Accessed 22 Oct 2013.
  18. Margolinas, C., Abboud-Blanchard, M., Bueno-Ravel, L., Douek, N., Fluckiger, A., Gibel, P., Vandebrouck, F., & Wozniak, F. (Eds.). (2011). En amont et en aval des ingénieries didactiques. Actes de la 11ème Ecole d’Eté de Didactique des Mathématiques, Clermont-Ferrand 2009. Grenoble: La Pensée Sauvage.Google Scholar
  19. Restrepo, A. (2008). Genèse instrumentale du déplacement en géométrie dynamique chez des élèves de 6eme. Doctoral thesis, Université Joseph Fourier, Grenoble.Google Scholar
  20. Schneider, M. (2013). Epistemological obstacles in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education. Berlin/Heidelberg: Springer. (in press).Google Scholar
  21. Sensevy, G. (2011). Overcoming fragmentation: Towards a joint action theory in didactics. In B. Hudson & M. Meyer (Eds.), Beyond fragmentation: Didactics, learning and teaching in Europe (pp. 60–76). Leverkusen/Farmington Hills: Barbara Budrich Publishers.Google Scholar
  22. Sensevy, G., Schubauer-Leoni, M.-L., Mercier, A., Ligozat, F., & Perrot, G. (2005). An attempt to model the teacher’s action in the mathematics class. Educational Studies in Mathematics, 59(1–3), 153–181.CrossRefGoogle Scholar
  23. Sriraman, B., & English, L. (Eds.). (2010). Theories of mathematics education: Seeking new frontiers. Berlin/Heidelberg: Springer Science.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michèle Artigue
    • 1
    Email author
  • Mariam Haspekian
    • 2
  • Agnès Corblin-Lenfant
    • 3
  1. 1.Laboratoire LDAR & IREMUniversité Paris Diderot – Paris 7, Sorbonne Paris CitéParis Cedex 13France
  2. 2.Faculté des Sciences Humaines et Sociales, Laboratoire EDAUniversité Paris Descartes, Sorbonne Paris CitéParis Cedex 06France
  3. 3.IREM de REIMSUFR Sciences Exactes et NaturellesReims Cedex 2France

Personalised recommendations