Advertisement

Topaze Effect: A Case Study on Networking of IDS and TDS

  • Angelika Bikner-AhsbahsEmail author
  • Michèle Artigue
  • Mariam Haspekian
Chapter
Part of the Advances in Mathematics Education book series (AME)

Abstract

The case study of Topaze effect shows a networking practice of connecting two theoretical approaches, TSD and IDS. It investigates empirically two phenomena, Topaze effect and funnel pattern, of the two theories and networks the theories by comparing and contrasting these phenomena including also the semiotic game phenomenon. This process leads to deepening the understanding of the strengths and blind spots of the two theories on the one hand and provides enriched insight into the character of the phenomena and their common idea on the other.

Keywords

Networking of theories Social interaction Topaze effect 

References

  1. Artigue, M. (coord.) (2009). Integrative theoretical framework – Version C. Deliverable 18, ReMath Project. http://remath.cti.gr. Accessed 29 November.
  2. Bauersfeld, H. (1978). Kommunikationsmuster im Mathematikunterricht. Eine Analyse am Beispiel der Handlungsverengung durch Antworterwartung. In H. Bauersfeld (Ed.), Fallstudien und Analysen zum Mathematikunterricht (pp. 158–170). Hannover: Schroedel.Google Scholar
  3. Bikner-Ahsbahs, A. (2005). Mathematikinteresse zwischen Subjekt und Situation. Theorie interessendichter Situationen – Baustein für eine mathematikdidaktische Interessentheorie. Hildesheim/Berlin: Franzbecker.Google Scholar
  4. Bikner-Ahsbahs, A., & Prediger, S. (2010). Networking of theories – An approach for exploiting the diversity of theoretical approaches. In B. Sriraman & L. English (Eds.), Theories of mathematics education: Seeking new frontiers (Advances in mathematics education series, pp. 483–506). New York: Springer.Google Scholar
  5. Brousseau, G. (1997). Theory of didactical situations in mathematics (Ed. & Trans., N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield.) Dordrecht: Kluwer.Google Scholar
  6. Comiti, C., & Grenier, D. (1995). Two examples of “split situation” in the mathematics classroom. For the Learning of Mathematics, 15(2), 17–22.Google Scholar
  7. Fetzer, M. (2013). Counting on objects in mathematical learning processes. Network theory and networking theories. Contribution to CERME 8 in Antalya, Turkey.Google Scholar
  8. Hersant, M. (2004). Caractérisation d’une pratique d’enseignement des mathématiques: le cours dialogué. Revue Canadienne de l’enseignement des sciences, des mathématiques et des technologies, 4(2), 243–260.Google Scholar
  9. Haspekian, M., Bikner-Ahsbahs, A., & Artigue, M. (2013). When the fiction of learning is kept: A case of networking two theoretical views. In A. Heinze (Ed.), Proceedings of the 37th conference of the international group for the psychology of mathematics education (Vol. 3, pp. 9–16). Kiel: IPN.Google Scholar
  10. Jungwirth, H. (2003). Interpretative Forschung in der Mathematikdidaktik – ein Überblick für Irrgäste, Teilzieher und Strandvögel. In G. Kaiser (Ed.), Qualitative empirical methods in mathematics education – Discussions and reflections. Zentralblatt für Didaktik der Mathematik, 35(5), 189–200.Google Scholar
  11. Novotna, J., & Hospesova, A. (2007). What is the price of Topaze? In J.-H. Woo, H.-C. Lew, K.-S. Park, & D.-Y. Seo (Eds.), Proceedings of PME 31 (Vol. 4, pp. 25–32). Seoul: PME.Google Scholar
  12. Novotna, J., & Hospesova, A. (2008). Types of linking in teaching linear equations. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepulveda (Eds.), Proceedings of PME 32 and PME NA 30 (Vol. 4, pp. 49–56). Morelia: PME.Google Scholar
  13. Radford, L. (2008). Connecting theories in mathematics education: Challenges and possibilities. ZDM – The International Journal on Mathematics Education, 40(2), 317–327.CrossRefGoogle Scholar
  14. Sensevy, G. (2012). About the joint action theory in didactics. Zeitschrift für Erziehungswissenschaft, 15(3), 503–516.CrossRefGoogle Scholar
  15. Steinbring, H. (2005). The construction of new mathematical knowledge in classroom interaction – An epistemological perspective (Mathematics education library, Vol. 38). Berlin/New York: Springer.Google Scholar
  16. Voigt, J. (1983). Die heimliche Organisation von Aufgabenlösungsprozessen im Mathematikunterricht einer achten Klasse. In H. Bauersfeld, H. Bussmann, G. Krummheuer, J.-H. Lorenz, & J. Voigt (Eds.), Lernen und Lehren von Mathematik. Untersuchungen zum Mathematikunterricht, IDM Band 6 (pp. 172–222). Köln: Aulis-Verlag.Google Scholar
  17. Warfield, V. (2006). Invitation to didactique. www.math.washington.edu/~warfield/Inv%20to%20Did66%207-22-06.pdf. Accessed 29 Nov 2013.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Angelika Bikner-Ahsbahs
    • 1
    Email author
  • Michèle Artigue
    • 2
  • Mariam Haspekian
    • 3
  1. 1.Fachbereich 03 für Mathematik und Informatik, AG Didaktik der MathematikUniversity of BremenBremenGermany
  2. 2.Laboratoire LDAR & IREMUniversité Paris Diderot – Paris 7Paris Cedex 13France
  3. 3.Laboratoire EDA, Faculté des sciences humaines et socialesUniversité Paris Descartes, Sorbonne Paris CitéParis Cedex 06France

Personalised recommendations