# A Successful Attempt at a Synthetic View of Continuum Mechanics on the Eve of WWI: Hellinger’s Article in the German Encyclopaedia of Mathematics

Chapter

First Online:

## Abstract

This essay analyses the comprehensive nature of a remarkable synthesis published by Hellinger (Die allgemein ansätze der mechanik der kontinua. Springer, Berlin, pp. 602–694, 1914) in a German encyclopaedia. In this contribution Hellinger, a mathematician, succeeds in capturing the progress and subtleties of all what was achieved during the nineteenth century, accounting for most recent works and also pointing at forthcoming developments. On this occasion, the scientific environment of Hellinger is perused and the style of Hellinger and his excellent comprehending of continuum mechanics are evaluated from a document that is a true landmark in the field although often ignored.

### Keywords

Continuum mechanics Variational principles Finite strains Oriented media### References

- 1.Appell P (1909) Traité de mécanique rationnelle, vol 3. Mécanique des milieux Continus, Gauthier-Villars, ParisGoogle Scholar
- 2.Boltzmann L (1874) Zur theorie der elastischen Nachwirkung. Sitz K u K Akad Wien 70:275–306Google Scholar
- 3.Born M (1906) Untersuch, Über die Stabilität der elastischen Linie. Preisschrift, GöttingenGoogle Scholar
- 4.Born M (1909) Die theorie des starren elektrons in der kinermatik des relativitätsprinzips. Ann der Physik 30:1–56CrossRefMATHGoogle Scholar
- 5.Brill A (1909) Vorlesungen zur einführung in die mechanik raumerfüllender massen (Lectures on the introduction to mechanics of space-filling—i.e., 3D—masses), LeipzigGoogle Scholar
- 6.Caratheodory C (1909) Untersuchungen über die Grundlagen der Thermodynamik. Math Annalen 67:355–386CrossRefMathSciNetGoogle Scholar
- 7.Cosserat E, Cosserat F (1896) Sur la théorie de l’élasticité. Ann Fac Sci Toulouse (1ère série), 10(3-5): I1–I116Google Scholar
- 8.Cosserat E, Cosserat F (1909). Théorie des corps déformables. Hermann, Paris, 226 pages. (Reprint by Editions Gabay, Paris, 2008; Reprint by Hermann Archives, Paris, 2009 [English translation: N68-15456: Clearinghouse Federal Scientific and Technical Information, Springfield, Virginia NASA, TT F-11561 (February 1968)); another translation by D. Delphenich, 2007] (originally published as a supplement in pp. 953-1173 to: Chwolson OD (1909) Traité de physique (traduit du Russe), Vol. II, Paris, Hermann)Google Scholar
- 9.D’Alembert J. Le Rond (1743) Traité de dynamique. 1st edn, ParisGoogle Scholar
- 10.Duhem P (1891) Hydrodynamique, élasticité, acoustique. A. Hermann Editeur, ParisGoogle Scholar
- 11.Duhem P (1896) Le potentiel thermodynamique et la pression hydrostatique. Ann Ecole Norm Sup, 10(3):187–230Google Scholar
- 12.Duhem P (1911) Traité d’énergétique ou thermodynamique générale. Gauthier-Villars, Paris Two volumesMATHGoogle Scholar
- 13.Duvaut G, Lions JL (1972) Inéquations variationnelles en mécanique et en physique. Editons Dunod, ParisGoogle Scholar
- 14.Duvaut G, Lions JL (1979) Variational inequations in mechanics and physics. Springer, BerlinGoogle Scholar
- 15.Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16(1):1–18MathSciNetGoogle Scholar
- 16.Eringen AC, Maugin GA (1990) Electrodynamics of continua. Springer, New York Two volumesCrossRefGoogle Scholar
- 17.Flügge S (ed) (1955–1988) Handbuch der physik. Springer, BerlinGoogle Scholar
- 18.Geiger H, Scheel K (eds) (1926–1933) Handbuch der physik. Julius Springer, BerlinGoogle Scholar
- 19.Germain P (1973) La méthode des puissances virtuelles en mécanique des milieux continus-I: théorie du second gradient. J de Mécanique 12:235–274 ParisMATHMathSciNetGoogle Scholar
- 20.Germain P (1986) Mécanique. Editions de l’ecole polytechnique, Palaiseau, Two volumesGoogle Scholar
- 21.Gibbs JW, Wilson EB (1901) Vector analysis. Yale University Press, New Haven [The first book of its kind, this may however be a wrong attribution since the book in fact is E.B. Wilson’s redaction with an enriched rendering of Gibbs’ lectures in vector analysis at Yale; Wilson was only 22 years old when the book was published (see pp. 228-229 in Crowe MJ (1967) A history of vector analysis, Univ. of Notre Dame Press; reprint Dover, 1985)]Google Scholar
- 22.Green G (1839) On the laws of reflection and refraction of light at the common surface of two non-crystallized media. Trans Cambridge Phil Soc 7:245–269Google Scholar
- 23.Hadamard J (1903) Leçons sur la propagation des ondes. Gauthier-Villars, ParisMATHGoogle Scholar
- 24.Hamel GWK (1908) Über die grundlagen der mechanik. Math Annalen, 66, 350-397 (This was Hamel’s Habilitationsschrift to be further developed in a contribution to the Handbuch der Physik, Die axiome der Mechanik. Geiger and Scheel (eds) Bd. 5. pp.1–42, Springer, Berlin, 1927)Google Scholar
- 25.Hamel GWK (1912) Elementare Mechanik. Teubner, BerlinMATHGoogle Scholar
- 26.Hellinger E (1914) Die allgemein ansätze der mechanik der kontinua. In: Klein F, Müller CH (eds) Enz math wiss, vol 4, part 4, Article 30, Springer, Berlin, pp 602–694Google Scholar
- 27.Hellinger E, Toeplitz O (1927) Integralgleichungen und gleichungen mit unenlichvielen unbekannten (originally intended for the Enz Math Wiss, reprinted by Chelsea, New York, 1953)Google Scholar
- 28.Herglotz G (1911) Über die mechanik des deformierbaren körpers vom standpunke der relativitätstheorie. Ann der Physik, 36(4):493–415Google Scholar
- 29.Heun K (1904) Ansätze und allgemeine methoden der systemmechanik. In: Klein F, Müller CH (eds) Enz math wiss, vol 4/2, Article 11, Springer, Berlin, pp 359–504Google Scholar
- 30.Kármán Th von (1914) Physikalische grundlagen der festigkeitslehre. In: Klein F, Müller CH (eds) Enz math wiss, vol 4/4, Article 31, Springer, BerlinGoogle Scholar
- 31.Klein F, Mueller CH (eds) (1907–1914) Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen (in brief: Enz Math Wiss), B.G. Teubner (Verlag), Leipzig (vol 4, Part 4 on Mechanics is available on the site of the University of Toronto-Gerstein Science Information Centre as archive.org/details/p4encyclopedie04-akaduof )Google Scholar
- 32.Lagrange JL (1788) Mécanique analytique, First edition. Vve Courcier, ParisGoogle Scholar
- 33.Le Roux J (1911) Etude géométrique de la torsion et de la flexion, dans les déformations infinitésimales d’un milieu continu. Ann Ecole Norm Sup 28:523–579MATHMathSciNetGoogle Scholar
- 34.MacCullagh J (1839) An essay towards a dynamical theory of crystalline reflection and refraction. Trans Roy Irish Acad Sci 21:17–50Google Scholar
- 35.Maugin GA (1980) The method of virtual power in continuum mechanics: Application to coupled fields. Acta Mech 35(1):1–70CrossRefMATHMathSciNetGoogle Scholar
- 36.Maugin GA (1992) The thermo-mechanics of plasticity and fracture. Cambridge University Press, UKCrossRefGoogle Scholar
- 37.Maugin GA (2012) The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool. Cont Mech and Thermodynam 25:127–146 (Special issue in the honor of G. Del Piero)Google Scholar
- 38.Maugin GA (2013) Continuum mechanics through the twentieth century—a concise historical perspective. Springer, DordrechtCrossRefMATHGoogle Scholar
- 39.Maugin GA (2013) What happened on September 30, 1822, and what were its implications for the future of continuum mechanics? (Preprint UPMC, also Chapter 3 in this book)Google Scholar
- 40.Maugin GA (2013) About the Cosserats’ book of 1909 (Preprint UPMC, also Chapter 8 in this book)Google Scholar
- 41.Maugin GA (2013) A course of continuum mechanics at the dawn of the twentieth century (Volume III of Appell’s Treatise on Rational Mechanics) (Preprint UPMC, also Chapter 11 in the present book)Google Scholar
- 42.Minkowski H (1908) Die grundgleichungen für die electrodynamischen Vorgänge in bewegten Körpern. Nach Ges d W Gottingen, math-phys KL. p 53Google Scholar
- 43.Molk J, Appell P (eds) (1904–1916) Encyclopédie des sciences mathématiques pures et appliquées, twenty two volumes, [Facsimile reprint by Gabay, Paris, 1991-1995] (French translation from the German of: F. Klein and C.H. Mueller (eds), Enz Math Wiss, B.G. Teubner (Verlag), Leipzig)Google Scholar
- 44.Piola G (1848) Intorno alle equazioni fondamentali del movimento di corpi qualsivoglioni considerati secondo la naturale loro forma e costituva. Mem Mat Fiz Soc Ital Modena 24(1):1–186Google Scholar
- 45.Reissner E (1953) On a variational theorem for finite elastic deformation. J Math Phys 32:129–135 MIT, CambridgeMATHMathSciNetGoogle Scholar
- 46.Sedov LI (1968) Variational methods of constructing models of continuous media. In: Parkus H, Sedov LI (eds) Irreversible aspects of continuum mechanics (IUTAM Symposium, Vienna, 1966), Springer, Berlin, pp 346–358Google Scholar
- 47.Timoshenko SP (1953) History of strength of materials. McGraw Hill, New York (Reprint by Dover, New York, 1985)Google Scholar
- 48.Truesdell CA, Noll W (1965) The nonlinear field theories of mechanics In: S. Flügge (ed) Handbuch der Physik, vol. III/3. Springer-Verlag, BerlinGoogle Scholar
- 49.Truesdell CA, Toupin RA (1960) The classical theories of fields. In: Flügge S (ed) Handbuch der Physik,vol III/1. Springer-Verlag, BerlinGoogle Scholar
- 50.Voigt W (1887) Teoretische studien über elasticitätverhältinsse der krystalle, I.II. Abh K Ges Wissen Göttingen 34(3-52):53–100Google Scholar
- 51.Voigt W (1895/1896) Kompendium der theoretischen physik (Two volumes). Teubner, LeipzigGoogle Scholar
- 52.Voss A (1904) Principles of Rational mechanics (in German). In: Klein F, Mueller CH (eds) Enz Math Wiss, vol 4 Article 1, B.G. Teubner (Verlag), Leipzig (translated into French by the Cosserats in Molk and Appell (1904–1916))Google Scholar
- 53.Washizu K (1968) Variational methods in elasticity and plasticity. Pergamon Press, OxfordMATHGoogle Scholar

## Copyright information

© Springer International Publishing Switzerland 2014