Advertisement

General Introduction: About the Contents and Form of this Book

  • Gérard A. Maugin
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 214)

Abstract

This general introduction gives the motivation that led the author to write this book. It provides a general overview of the contents while justifying the peculiar choice of the various essays that reconstruct the history oriented examination of the most fundamental developments from the early eighteenth century to the dawn of the twentieth century. It also gives essential elements of a relevant bibliography concerning the main actors of our play.

References

  1. 1.
    Appell P (1921) Traité de mécanique rationnelle, 3rd edn. Gauthier-Villars, Paris (Facsimile reprint by Gabay, Paris, 1991)Google Scholar
  2. 2.
    Barré de Saint-Venant AJC (1864) Historique abrégé des recherches sur la résistance des matériaux et sur l’élasticité des corps solides. In: Navier’s « Résumé des leçons sur l’application de la mécanique ». Dunod, ParisGoogle Scholar
  3. 3.
    Belhoste B (1991) Augustin-Louis Cauchy: a biography. Springer, New York (English trans: French original “Cauchy, 1789–1857”, Editions Belin, Paris)Google Scholar
  4. 4.
    Bernhard H (1938) The Bernoulli family. Double Day, Page & Co, New YorkGoogle Scholar
  5. 5.
    Bernhard H (1983) The Bernoulli family. In: Wussing H, Arnold W (eds) Biographien bedeutender Mathematiker, BerlinGoogle Scholar
  6. 6.
    Bernoulli D (1982) Werke von Daniel Bernoulli. Birkhäuser, BaselGoogle Scholar
  7. 7.
    Bernoulli J (1742) Johannis Bernoulli opera omnia. Boucquet, Lausannae (reprint Olme, Hildesheim, 1968)Google Scholar
  8. 8.
    Bertrand J (1889) D’Alembert. Paris; available on the web site “Project Guttenberg”Google Scholar
  9. 9.
    Capecchi D (2005) Lagrange e la storia della meccanica. BariGoogle Scholar
  10. 10.
    Capecchi D (2012) History of virtual work laws (Science networks historical studies series, vol 42). Birkhäuser-Springer, MilanoGoogle Scholar
  11. 11.
    Caratheodory C (1909) Untersuchungen über die Grundlagen der Thermodynamik. Math Annalen 67, 355–386 (English trans: Kestin J (ed) (1976) The second law of thermodynamics: benchmark papers on energy, vol 5. Dowden, Hutchinson and Ross, Pennsylvania)Google Scholar
  12. 12.
    Cauchy AL (1823) Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques. Bull Soc Filomat Paris January issue, 9–13Google Scholar
  13. 13.
    Cauchy AL (1828) Sur les équations qui expriment l’équilibre ou les lois du mouvement intérieur d’un corps solide élastique ou non élastique. Exercices de mathématiques, vol 3, pp 160–187 [This presents in print the ideas originally submitted to the Paris Academy of Sciences on 30th Sept 1822, and abstracted in Cauchy (1823)]Google Scholar
  14. 14.
    Cauchy AL (1828) In: Exercices de Mathématiques, vol 3, pp 188–212 (Sept 1828), and « De la pression ou tension dans un système de points matériels », pp 213–236 (Oct 1828)Google Scholar
  15. 15.
    Cauchy AL (1882–1974) Œuvres complètes, vol 27. Gauthier-Villars, ParisGoogle Scholar
  16. 16.
    D’Alembert JLR (1743) Traité de dynamique, 1st edn, Paris (reprinted by Gauthier-Villars Publishers, in two volumes, Paris, 1925; also Facsimile reprint by Editions Gabay, Paris, 1998)Google Scholar
  17. 17.
    Darrigol O (2005) Worlds of flows: a history of hydrodynamics from the Bernoullis to Prandtl. Oxford University Press, OxfordGoogle Scholar
  18. 18.
    Dugas R (1950) History of mechanics. Editions du Griffon, Neuchatel, Switzerland (Dover reprint, New York, 1988)Google Scholar
  19. 19.
    Duhem P (1903) L’évolution de la mécanique (published in seven parts in: Revue générale des sciences, Paris; as a book, A. Joanin, Paris) (English trans: The evolution of mechanics. Sijthoof and Noordhoff, 1980)Google Scholar
  20. 20.
    Duhem P (1911) Traité d’énergétique ou de thermodynamique générale, vol 1 (528 pages), vol 2 (504 pages) Gauthier-Villars, Paris (Reprint by Gabay, Paris, 1997)Google Scholar
  21. 21.
    Euler L (1960) Opera omnia (Complete works). BaselGoogle Scholar
  22. 22.
    Gibbs JW (1876–1878) On the equilibrium of heterogeneous substances, Parts 1 and 2. Trans Connecticut Acad of Arts and Sciences 3, pp 108–248 (1876); 3, pp 343–520 (1878) (German trans: Ostwald W, French trans: Le Chatelier H, both reputed physico-chemists)Google Scholar
  23. 23.
    Gibbs JW (1928) Collected works of J. Willard Gibbs (Two volumes). In: Bumstead HR, Gibbs-Van Name R (eds) Longmans, Green and Co, New YorkGoogle Scholar
  24. 24.
    Gillispie CG (ed) (1970–1990) Dictionary of scientific biography. Scribners, New YorkGoogle Scholar
  25. 25.
    Green G (1903) Mathematical papers of the late George Green. Ferrers NM (ed) Mcmillan, London (reprint, Chelsea Publishing Co., New York, 1970)Google Scholar
  26. 26.
    Hankins TL (1970) Jean d’Alembert: science and enlightenment. Clarendon, Oxford, UK (reprint, Gordon and Breach, New York, 1990)Google Scholar
  27. 27.
    Hellinger E (1914) Die allgemein Ansätze der Mechanik der Kontinua. In: Enz. Math.Wiss. Klein F, Wagner K (eds), vol 4, Part 4. Springer, Berlin, pp 602–694Google Scholar
  28. 28.
    von Helmholtz H (1882–1895) Wissenschafliche abhandlungen von Herrmann Helmholtz. JA Barth, LeipzigGoogle Scholar
  29. 29.
    Hermann D (1963) Joseph Louis Lagrange (1736–1823). Treptow, BerlinGoogle Scholar
  30. 30.
    Jaki SL (1984) Uneasy genius: the life and works of Pierre Duhem. Martinus Nijhoff, The HagueGoogle Scholar
  31. 31.
    Jouguet E (1924) Lectures de mécanique (La mécanique enseignée par les auteurs originaux). Gauthier-Villars, Paris (Facsimile reprint, Gabay, Paris, 2007)Google Scholar
  32. 32.
    Jungnickel C, McCormmach R (1986) Intellectual mastery of nature (Two volumes). Chicago University Press, Chicago (especially informative on G. Kirchhoff)Google Scholar
  33. 33.
    Kirchhoff GR (1882) Gesammelte Abhandlungen, Leipzig (Mechanik, 4th edn, Leipzig, 1897)Google Scholar
  34. 34.
    Lagrange JL (1788) Mécanique analytique, 1st edn. Vve Desaint, Paris; 2nd edn. Vve Courcier, Paris, 1811/15 (Facsimile reprint of 4th edn with notes and comments par J. Bertrand and G. Darboux, Gabay, Paris) (English trans: 2nd edn (1811) by Boissonnade A, Vagliente VN. Springer, Dordrecht, 1997)Google Scholar
  35. 35.
    Lagrange JL (1867–1892) Oeuvres complètes (14 volumes). Paris (reprint in 10 volumes, Hildesheim, New York, 1973)Google Scholar
  36. 36.
    Love AEH (1892) A Treatise on the mathematical theory of elasticity, CUP [1944, 4th edn, Dover reprint, New York; originally published in two volumes in 1892–1893]Google Scholar
  37. 37.
    Mach E (1911) The science of mechanics: a critical and historical account of its development. Open Court, Chicago (Paperback 1988) (Original German edition: F.A. Brockhaus, Leipzig, 1883) (analysed by Duhem P (1903) Bulletin des Sciences Mathématiques 27:261–283)Google Scholar
  38. 38.
    Manville O (1927) La physique de Pierre Duhem. Mém Soc Sci Phys Nat Bordeaux, 7ème Série, 171–636 (the most comprehensive and unsurpassed analysis of Duhem’s scientific works by one of his direct disciples)Google Scholar
  39. 39.
    Maugin GA (1980) The method of virtual power in continuum mechanics: application to coupled fields. Acta Mechanica 35(1):1–70 (see the historical introduction and references therein)Google Scholar
  40. 40.
    Maugin GA (1994) Helmholtz’s influence on Pierre Duhem and our view of mathematical physics. Contribution to: Helmholtz-Feier (Centennial of Helmholtz’s Death, Sept 1994, Berlin), Organizers: Ebeling D, Muschik W, p 13, TU Berlin and Humboldt Universität, Berlin (unpublished) ( Chap 7 in the present book)
  41. 41.
    Maugin GA (2012) The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool. Cont Mech Thermodynam 25:127–146 (special issue in the honor of Del Piero G)Google Scholar
  42. 42.
    Maugin GA (2013) Continuum mechanics through the twentieth century: a concise historical perspective. Springer SMIA Series, DordrechtCrossRefGoogle Scholar
  43. 43.
    Maugin GA (2013) About the Cosserats’ book of 1909 (preprint UPMC, Paris) ( Chap 8 in the present book)
  44. 44.
    Oravas GE, McLean L (1966) Historical development of energetical principles in elastomechanics, Part I: From Heraclitos to Maxwell. ASME Appl Mech Rev 19(8):647–658Google Scholar
  45. 45.
    Oravas GE, McLean L (1966) Historical development of energetical principles in elastomechanics, Part II: From Cotterill to Prange. ASME Appl Mech Rev 19(11):919–933Google Scholar
  46. 46.
    Piola G (2014) The complete works of Gabrio Piola, vol I. Springer series Advanced structural materials, vol 18 (commented English translation; to be published)Google Scholar
  47. 47.
    Rankine WJM (1855) On the Science of Energetics. In: Proceedings of the philosophical society of Glasgow, III:381–399 (the original paper on energetics)Google Scholar
  48. 48.
    Soutas-Little RW (2011) History of continuum mechanics. Contribution to the (UNESCO) Encyclopedia of Life Support Systems (EOLSS), Section “Continuum mechanics” Merodio J, Saccomandi G (eds), 14 p, EOLSS Publishers, Oxford (Extremely concise text)Google Scholar
  49. 49.
    Szabò I (1977) Geschichte der mechanischen Prinzipien. Birkhauser, BaselMATHGoogle Scholar
  50. 50.
    Thiele R (1982) Leonard Euler. LeipzigGoogle Scholar
  51. 51.
    Timoshenko SP (1953) History of the strength of materials. McGraw Hill, New York (Dover reprint, New York, 1983)Google Scholar
  52. 52.
    Todhunter I (1886) A history of the theory of elasticity and the strength of materials from Galileo to the present time, vol 1. Cambridge University Press, UK (edited and published posthumously in 1886 by Karl Pearson)Google Scholar
  53. 53.
    Todhunter I, Pearson K (1893) A history of the theory of elasticity and the strength of materials from Galilei to the present time, vol 2: Saint-Venant to Lord Kelvin. Cambridge University Press, UKGoogle Scholar
  54. 54.
    Truesdell CA (1968) Essays in the history of mechanics. Springer, New YorkCrossRefMATHGoogle Scholar
  55. 55.
    Truesdell CA (1984) An idiot’s fugitive essays on science. Springer, New YorkCrossRefMATHGoogle Scholar
  56. 56.
    Truesdell CA, Toupin RA (1960) The classical theory of fields. In: Flügge S (ed) Handbuch der Physik, vol III/1. Springer, Berlin, pp 226–858Google Scholar
  57. 57.
    Whittaker ET (1951) A history of the theories of ether and electricity. Nelson, London (originally in two volumes; Dover reprint in one volume, New York, 1989)Google Scholar

Web site

  1. 58.
    MacTutor history of mathematics archive. (The) http://www-history.mcs.st-andrews.ac.uk/index.html

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institut Jean Le Rond d’AlembertUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations