Advertisement

Model Predictive Control of Autonomous Vehicles

  • Mario Zanon
  • Janick V. Frasch
  • Milan Vukov
  • Sebastian Sager
  • Moritz Diehl
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 455)

Abstract

The control of autonomous vehicles is a challenging task that requires advanced control schemes. Nonlinear Model Predictive Control (NMPC) and Moving Horizon Estimation (MHE) are optimization-based control and estimation techniques that are able to deal with highly nonlinear, constrained, unstable and fast dynamic systems. In this chapter, these techniques are detailed, a descriptive nonlinear model is derived and the performance of the proposed control scheme is demonstrated in simulations of an obstacle avoidance scenario on a low-fricion icy road.

Keywords

Model Predictive Control Autonomous Vehicle Prediction Horizon Dynamic Optimization Problem Nonlinear Model Predictive Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by Research Council KUL: PFV/10/002 Optimization in Engineering Center OPTEC, GOA/10/09 MaNet and GOA/10/11 Global real-time optimal control of autonomous robots and mechatronic systems. Flemish Government: IOF / KP / SCORES4CHEM, FWO: PhD/postdoc grants and projects: G.0320.08 (convex MPC), G.0377.09 (Mechatronics MPC); IWT: PhD Grants, projects: SBO LeCoPro; Belgian Federal Science Policy Office: IUAP P7 (DYSCO, Dynamical systems, control and optimization, 2012-2017); EU: FP7- EMBOCON (ICT-248940), FP7-SADCO (MC ITN-264735), ERC ST HIGHWIND (259 166), Eurostars SMART, ACCM.

References

  1. 1.
    Falcone P, Borrelli F, Asgari J, Tseng H, Hrovat D (2008) Low complexity MPC schemes for integrated vehicle dynamics control problems. 9\(^{th}\) international symposium on advanced vehicle, controlGoogle Scholar
  2. 2.
    Gao Y, Gray A, Frasch JV, Lin T, Tseng E, Hedrick J, Borrelli F (2012) Spatial predictive control for agile semi-autonomous ground vehicles. In: Proceedings of the 11th international symposium on advanced vehicle, controlGoogle Scholar
  3. 3.
    Gao Y, Lin T, Borrelli F, Tseng E, Hrovat D (2010) Predictive control of autonomous ground vehicles with obstacle avoidance on slippery roads. In: Dynamic systems and control conferenceGoogle Scholar
  4. 4.
    Gray A, Gao Y, Lin T, Hedrick J, Tseng E, Borrelli F (2012) Predictive control for agile semi-autonomous ground vehicles using motion primitves. In: American control conference, ACCGoogle Scholar
  5. 5.
    Frasch JV, Gray AJ, Zanon M, Ferreau HJ, Sager S, Borrelli F, Diehl M (2013) An auto-generated nonlinear MPC algorithm for real-time obstacle avoidance of ground vehicles. In: Proceedings of the European control conference (2013)Google Scholar
  6. 6.
    Diehl M, Bock H, Schlöder J, Findeisen R, Nagy Z, Allgöwer F (2002) Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J Process Control 12(4):577–585CrossRefGoogle Scholar
  7. 7.
    Bock H, Plitt K (1984) A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings 9th IFAC World Congress Budapest. Pergamon Press, NY, pp 242–247Google Scholar
  8. 8.
    Zanon M, Frasch J, Diehl M (2013) Nonlinear moving horizon estimation for combined state and friction coefficient estimation in autonomous driving. In: Proceedings of the European control conferenceGoogle Scholar
  9. 9.
    Zanon M, Gros S, Diehl M (2013) Airborne wind energy. Control of rigid-airfoil airborne wind energy systems. Springer, BerlinGoogle Scholar
  10. 10.
    Mayne D, Rawlings J, Rao C, Scokaert P (2000) Constrained model predictive control: stability and optimality. Automatica 26(6):789–814CrossRefMathSciNetGoogle Scholar
  11. 11.
    Grüne L (2012) NMPC without terminal constraints. In: Proceedings of the IFAC conference on nonlinear model predictive, control 2012Google Scholar
  12. 12.
    Rao C (2000) Moving horizon estimation of constrained and nonlinear systems. Ph.D. Thesis, University of Wisconsin-MadisonGoogle Scholar
  13. 13.
    Kühl P, Diehl M, Kraus T, Schlöder JP, Bock HG (2011) A real-time algorithm for moving horizon state and parameter estimation. Comput Chem Eng 35(1):71–83. doi: 10.1016/j.compchemeng.2010.07.012 CrossRefGoogle Scholar
  14. 14.
    Biegler L, Rawlings J (1991) Optimization approaches to nonlinear model predictive control. In: Ray W, Arkun Y (eds) Proceedings of 4th international conference on chemical process control-CPC IV. AIChE, CACHE, pp 543–571Google Scholar
  15. 15.
    de Oliveira N, Biegler L (1995) An extension of Newton-type algorithms for nonlinear process control. Automatica 31(2):281–286CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Mayne DQ, Michalska H (1990) Receding horizon control of nonlinear systems. IEEE Trans Autom Control 35(7):814–824CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Frasch JV, Sager S, Diehl M (2013) A parallel quadratic programming method for dynamic optimization problems. SubmittedGoogle Scholar
  18. 18.
    Diehl M, Findeisen R, Allgöwer F (2007) A stabilizing real-time implementation of nonlinear model predictive control. In: Biegler L, Ghattas O, Heinkenschloss M, Keyes D, van Bloemen Waanders B (eds) Real-time and online PDE-constrained optimization, SIAM, pp 23–52Google Scholar
  19. 19.
    Ferreau HJ, Bock HG, Diehl M (2008) An online active set strategy to overcome the limitations of explicit MPC. Int J Robust Nonlinear Control 18(8):816–830. doi: 10.1002/rnc.1251 CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Houska B, Ferreau H, Diehl M (2011) An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range. Automatica 47(10):2279–2285. doi: 10.1016/j.automatica.2011.08.020 CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Houska B, Ferreau H, Diehl M (2011) ACADO toolkit—An open source framework for automatic control and dynamic optimization. Optimal Control Appl Methods 32(3):298–312. doi: 10.1002/oca.939 CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    ACADO Toolkit Homepage. http://www.acadotoolkit.org (2009–2013)
  23. 23.
    Ferreau H, Kraus T, Vukov M, Saeys W, Diehl M (2012) High-speed moving horizon estimation based on automatic code generation. In: Proceedings of the 51th IEEE conference on decision and control (CDC 2012)Google Scholar
  24. 24.
    Quirynen R, Gros S, Diehl M (2013) Fast auto generated ACADO integrators and application to MHE with multi-rate measurements. In: Proceedings of the European control conferenceGoogle Scholar
  25. 25.
    Quirynen R, Vukov M, Diehl M (2012) Auto generation of implicit integrators for embedded NMPC with microsecond sampling times. In: Lazar M, Allgöwer F (eds) Proceedings of the 4th IFAC nonlinear model predictive control conferenceGoogle Scholar
  26. 26.
    Pacejka HB (2006) Tyre and vehicle dynamics. Elsevier, AmsterdamGoogle Scholar
  27. 27.
    Kehrle F, Frasch JV, Kirches C, Sager S (2011) Optimal control of formula 1 race cars in a VDrift based virtual environment. In: Bittanti S, Cenedese A, Zampieri S (eds) Proceedings of the 18th IFAC World Congress, pp 11,907–11,912Google Scholar
  28. 28.
    Kiencke U, Nielsen L (2005) Automotive control systems. Springer, BerlinGoogle Scholar
  29. 29.
    Gray A, Zanon M, Frasch J (2012) Parameters for a Jaguar X-Type. http://www.mathopt.de/RESEARCH/obstacleAvoidance.php
  30. 30.
    Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  31. 31.
    Gerdts M (2006) A variable time transformation method for mixed-integer optimal control problems. Optim Control Appl Methods 27(3):169–182CrossRefMathSciNetGoogle Scholar
  32. 32.
    Kirches C, Sager S, Bock H, Schlöder J (2010) Time-optimal control of automobile test drives with gear shifts. Optimal Control Appl Methods 31(2):137–153CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Terwen S, Back M, Krebs V (2004) Predictive powertrain control for heavy duty trucks. In: Proceedings of IFAC symposium in advances in automotive control, Salerno, Italy, pp 451–457Google Scholar
  34. 34.
    Kirches C (2011) Fast numerical methods for mixed-integer nonlinear model-predictive control. Advances in numerical mathematics. Springer, WiesbadenCrossRefGoogle Scholar
  35. 35.
    Sager S, Reinelt G, Bock H (2009) Direct methods with maximal lower bound for mixed-integer optimal control problems. Math Prog 118(1):109–149CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Sager S, Bock H, Diehl M (2012) The integer approximation error in mixed-integer optimal control. Math Prog A 133(1–2):1–23CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Jung M, Kirches C, Sager S (2013) On perspective functions and canishing constraints in mixed-integer nonlinear optimal control. In: Facets of combinatorial optimization—Festschrift for Martin Grötschel (2013, to appear)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mario Zanon
    • 1
  • Janick V. Frasch
    • 1
    • 3
  • Milan Vukov
    • 1
  • Sebastian Sager
    • 3
  • Moritz Diehl
    • 1
    • 2
  1. 1.Electrical Engineering Department (ESAT-SCD) and the Optimization in Engineering Center (OPTEC)LeuvenBelgium
  2. 2.Institute of Microsystems Engineering (IMTEK)University of FreiburgFreiburgGermany
  3. 3.Institute for MathematicsUniversity of MagdeburgMagdeburgGermany

Personalised recommendations