Skip to main content

Trajectory Optimization: A Survey

  • Chapter
  • First Online:
Optimization and Optimal Control in Automotive Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 455))

Abstract

A survey of numerical methods for trajectory optimization. The goal of this survey is to describe typical methods that have been developed over the years for optimal trajectory generation. In addition, this survey describes modern software tools that have been developed for solving trajectory optimization problems. Finally, a discussion is given on how to choose a method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. GESOP & ASTOS (2003) The new generation of optimization software. Institute of Flight Mechanics and Control of Stuttgart University

    Google Scholar 

  2. Ascher UM, Mattheij RM, Russell RD (1996) Numerical solution of boundary-value problems in ordinary differential equations. SIAM Press, Philadelphia

    Google Scholar 

  3. Athans MA, Falb PL (2006) Optimal control: an introduction to the theory and its applications. Dover Publications, Mineola, New York

    Google Scholar 

  4. Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming: theory and algorithms, 3 edn. Wiley-Interscience, New Jersey

    Google Scholar 

  5. Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

    MATH  Google Scholar 

  6. Bellman R (1962) Dynamic programming treatment of the travelling salesman problem. J Assoc Comput Mach 9(1):61–63

    Article  MATH  MathSciNet  Google Scholar 

  7. Bellman R (1966) Dynamic programming. Science 1, 153(3731):34–37

    Google Scholar 

  8. Bellman R, Dreyfus S (1959) Functional approximations and dynamic programming. Math Tables Other Aids Comput 13(68):247–251

    Article  MATH  MathSciNet  Google Scholar 

  9. Bellman R, Kalaba R, Kotkin B (1963) Polynomial approximation—a new computational technique in dynamic programming: allocation processes. Math Comput 17(82):155–161

    MATH  MathSciNet  Google Scholar 

  10. Bellman RE, Dreyfus SE (1971) Applied dynamic programming. Princeton University Press, Princeton

    Google Scholar 

  11. Bertsekas D (2004) Nonlinear programming. Athena Scientific Publishers, Belmont, Massachusetts

    Google Scholar 

  12. Betts JT (1993) Using sparse nonlinear programming to compute low thrust orbit transfers. J Astronaut Sci 41:349–371

    Google Scholar 

  13. Betts JT (1994) Optimal interplanetary orbit transfers by direct transcription. J Astronaut Sci 42:247–268

    Google Scholar 

  14. Betts JT (2000) Very low thrust trajectory optimization using a direct sqp method. J Comput Appl Math 120:27–40

    Article  MATH  MathSciNet  Google Scholar 

  15. Betts JT (2001) Practical methods for optimal control using nonlinear programming. SIAM Press, Philadelphia

    MATH  Google Scholar 

  16. Betts JT (2007) Optimal lunar swingby trajectories. J Astronaut Sci 55:349–371

    Article  Google Scholar 

  17. Betts JT, Huffman WP (1994) A sparse nonlinear optimization algorithm. J Optim Theory Appl 82(3):519–541

    Article  MATH  MathSciNet  Google Scholar 

  18. Betts JT, Huffman WP (1997) Sparse optimal control software—socs. Technical report MEA-LR-085, Boeing information and support services, Seattle, Washington, July 1997

    Google Scholar 

  19. Björkman M, Holmström K (1999) Global optimization with the direct user interface for nonlinear programming. Adv Model Simul 2:17–37

    Google Scholar 

  20. Bliss GA (1946) Lectures on the calculus of variations. University of Chicago Press, Chicago, IL

    MATH  Google Scholar 

  21. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  22. Brauer GL, Cornick DE, Stevenson R (1977) Capabilities and applications of the program to optimize and simulate trajectories. Technical report NASA-CR-2770, National Aeronautics and Space Administration

    Google Scholar 

  23. Bryson AE, Ho Y-C (1975) Applied optimal control. Hemisphere Publishing, New York

    Google Scholar 

  24. Butcher JC (1964) Implicit runge-kutta processes. Math Comput 18(85):50–64

    Article  MATH  MathSciNet  Google Scholar 

  25. Butcher JC (2008) Numerical methods for ordinary differential equations. Wiley, New York

    Book  MATH  Google Scholar 

  26. Byrd RH, Nocedal J, Waltz RA (2006) Knitro: an integrated package for nonlinear optimization. In: Large scale nonlinear optimization. Springer, Berlin, pp 35–59

    Google Scholar 

  27. Coverstone-Carroll VL, Hartmann JW, Mason WJ (2000) Optimal multi-objective low-thrust spacecraft trajectories. Comput Methods Appl Mech Eng 186(2–4):387–402

    Google Scholar 

  28. Cuthrell JE, Biegler LT (1987) On the optimization of differential-algebraic processes. AIChe J 33(8):1257–1270

    Article  MathSciNet  Google Scholar 

  29. Cuthrell JE, Biegler LT (1989) Simultaneous optimization and solution methods for batch reactor control profiles. Comput Chem Eng 13(1/2):49–62

    Article  Google Scholar 

  30. Dahlquist G, Björck A (2003) Numerical methods. Dover Publications, Mineola, New York

    MATH  Google Scholar 

  31. Dontchev AL, Hager WW (1998) Lipschitzian stability for state constrained nonlinear optimal control. SIAM J Control Optim 36:696–718

    Article  MathSciNet  Google Scholar 

  32. Dontchev AL, Hager WW (1998) A new approach to lipschitz continuity in state constrained optimal control. Syst Control Lett 35:137–143

    Article  MATH  MathSciNet  Google Scholar 

  33. Dontchev AL, Hager WW (2001) The euler approximation in state constrained optimal control. Math Comput 70:173–203

    Article  MATH  MathSciNet  Google Scholar 

  34. Dontchev AL, Hager WW, Malanowski K (2000) Error bounds for the euler approximation and control constrained optimal control problem. Numer Funct Anal Appl 21:653–682

    Article  MATH  MathSciNet  Google Scholar 

  35. Dontchev AL, Hager WW, Veliov VM (2000) Second-order runge-kutta approximations in constrained optimal control. SIAM J Numer Anal 38:202–226

    Article  MATH  MathSciNet  Google Scholar 

  36. Dontchev AL, Hager WW, Veliov VM (2000) Uniform convergence and mesh independence of newton’s method for discretized variational problems. SIAM J Control Optim 39:961–980

    Article  MATH  MathSciNet  Google Scholar 

  37. Dotzauer E, Holmström K (1999) The tomlab graphical user interface for nonlinear programming. Adv Model Simul 2:9–16

    Google Scholar 

  38. Enright PJ (1991) Optimal finite—thrust spacecraft trajectories using direct transcription and nonlinear programming. PhD thesis, Department of Aerospace Engineering, University of Illinois at Urbana-Champaign

    Google Scholar 

  39. Enright PJ, Conway BA (1996) Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J Guidance Control Dyn 19(4):994–1002, Jul–Aug 1996

    Google Scholar 

  40. Fleming WH, Rishel RW (1982) Deterministic and stochastic optimal control. Springer, Heidelberg

    Book  Google Scholar 

  41. Gage PJ, Braun RD, Kroo IM (1995) Interplanetary trajectory optimization using a genetic algorithm. J Astronaut Sci 43(1):59–75

    Google Scholar 

  42. Gear WC (1971) Numerical initial-value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs, New Jersey

    MATH  Google Scholar 

  43. Gill PE, Murray W, Saunders MA (2002) Snopt: an sqp algorithm for large-scale constrained optimization. SIAM Rev 47(1):99–131

    Article  MathSciNet  Google Scholar 

  44. Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, London

    MATH  Google Scholar 

  45. Gill PE, Murray W, Saunders MA (2006) User’s guide for SNOPT version 7: software for large scale nonlinear programming, Feb 2006

    Google Scholar 

  46. Goh CJ, Teo KL (1988) Control parameterization: a unified approach to optimal control problems with general constraints. Automatica 24(1):3–18

    Article  MATH  MathSciNet  Google Scholar 

  47. Goh CJ, Teo KL (1988) Miser: a fortran program for solving optimal control problems. Adv Eng Softw 10(2):90–99

    Article  Google Scholar 

  48. Grimm W, Markl A (1997) Adjoint estimation from a multiple-shooting method. J Optim Theory Appl 92(2):263–283

    Article  MATH  MathSciNet  Google Scholar 

  49. Hager WW (2000) Runge-kutta methods in optimal control and the transformed adjoint system. Numerische Mathematik 87:247–282

    Article  MATH  MathSciNet  Google Scholar 

  50. Hairer E, Norsett SP, Wanner G (1993) Solving ordinary differential equations I: nonstiff problems. Springer, New York

    MATH  Google Scholar 

  51. Hairer E, Wanner G (1996) Solving ordinary differential equations II: stiff differential-algebraic problems. Springer, New York

    Book  MATH  Google Scholar 

  52. Hargraves CR, Paris SW (1987) Direct trajectory optimization using nonlinear programming techniques. J Guidance Control Dyn 10(4):338–342

    Article  MATH  Google Scholar 

  53. Hartmann JW, Coverstone-Carroll VL (1998) Optimal interplanetary spacecraft trajectories via a pareto genetic algorithm. J Astronaut Sci 46(3):267–282

    MathSciNet  Google Scholar 

  54. Herman AL (1995) Improved collocation methods with application to direct trajectory optimization. PhD thesis, Department of Aerospace Engineering, University of Illinois at Urbana-Champaign

    Google Scholar 

  55. Herman AL, Conway BA (1996) Direct optimization using collocation based on high-order gauss-lobatto quadrature rules. J Guidance Control Dyn 19(3):592–599

    Article  MATH  Google Scholar 

  56. Hildebrand FB (1992) Methods of applied mathematics. Dover Publications, Mineola, New York

    MATH  Google Scholar 

  57. Holmström K (1999) New optimization algorithms and software. Theor Stoch Process 1–2:55–63

    Google Scholar 

  58. Holmström K (1999) The tomlab optimization environment in matlab. Adv Model Simul 1:47–69

    MATH  Google Scholar 

  59. Holmström K, Björkman M (1999) The tomlab nlplib toolbox for nonlinear programming. Adv Model Simul 1:70–86

    MATH  Google Scholar 

  60. Holmström K, Björkman M, Dotzauer E (1999) The tomlab opera toolbox for linear and discrete optimization. Adv Model Simul 2:1–8

    Google Scholar 

  61. Hughes S (2008) Gmat—generalized mission analysis tool. Technical report, NASA Goddard Space Flight Center, http://sourceforge.net/projects/gmat

  62. Hull DG (2003) Optimal control theory for applications. Springer, New York

    Book  MATH  Google Scholar 

  63. Jockenhovel T (2002) Optcontrolcentre, software package for dynamic optimization. http://OptControlCentre.com/

  64. Kameswaran S, Biegler LT (2008) Convergence rates for direct transcription of optimal control problems using collocation at radau points. Comput Optim Appl 41(1):81–126

    Article  MATH  MathSciNet  Google Scholar 

  65. Keller HB (1976) Numerical solution of two point boundary value problems. SIAM, Philadelphia

    Google Scholar 

  66. Kirk DE (2004) Optimal control theory: an introduction. Dover Publications, Mineola, New York

    Google Scholar 

  67. Leitmann G (1981) The calculus of variations and optimal control. Springer, New York

    Book  MATH  Google Scholar 

  68. Lewis FL, Syrmos VL (1995) Optimal control, 2nd edn. Wiley, New York

    Google Scholar 

  69. Logsdon JS, Biegler LT (1989) Accurate solution of differential-algebraic optimization problems. Ind Eng Chem Res 28:1628–1639

    Article  Google Scholar 

  70. Milam MB (2003) Real-time optimal trajectory generation for constrained dynamical systems. PhD thesis, California Institute of Technology, Pasadena, California, May 2003

    Google Scholar 

  71. Oberle HJ, Grimm W (1990) Bndsco: a program for the numerical solution of optimal control problems. Technical report, Institute of Flight Systems Dynamics, German Aerospace Research Establishment DLR, IB 515–89/22, Oberpfaffenhofen, Germany

    Google Scholar 

  72. Ocampo C (2003) An architecture for a generalized spacecraft trajectory design and optimization system. In: Proceedings of the international conference on libration point missions and applications, Aug 2003

    Google Scholar 

  73. Ocampo C (2004) Finite burn maneuver modeling for a generalized spacecraft trajectory design and optimization system. Ann NY Acad Sci 1017:210–233

    Article  Google Scholar 

  74. Patterson MA, Rao AV (2013) GPOPS-II, a matlab software for solving multiple-phase optimal control problems hp—adaptive gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans Math Softw(in Revision) Sep 2013

    Google Scholar 

  75. Pontryagin LS (1962) Mathematical theory of optimal processes. Wiley, New York

    MATH  Google Scholar 

  76. Rao AV (1996) Extension of the computational singular perturbation method to optimal control. PhD thesis, Princeton University

    Google Scholar 

  77. Rao AV, Tang S, Hallman WP (2002) Numerical optimization study of multiple-pass aeroassisted orbital transfer. Optim Control Appl Methods 23(4):215–238

    Article  MATH  MathSciNet  Google Scholar 

  78. Rao AV (2000) Application of a dichotomic basis method to performance optimization of supersonic aircraft. J Guidance Control Dyn 23(3):570–573

    Article  Google Scholar 

  79. Rao AV (2003) Riccati dichotomic basis method for solving hyper-sensitive optimal control problems. J Guidance Control Dyn 26(1):185–189

    Article  Google Scholar 

  80. Rao AV, Benson DA, Darby CL, Francolin C, Patterson MA, Sanders I, Huntington GT (2010) Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method. ACM Trans Math Softw 37(2, Article 22):39 p

    Google Scholar 

  81. Rao AV, Mease KD (1999) Dichotomic basis approach to solving hyper-sensitive optimal control problems. Automatica 35(4):633–642

    Article  MATH  MathSciNet  Google Scholar 

  82. Rao AV, Mease KD (2000) Eigenvector approximate dichotomic basis method for solving hyper-sensitive optimal control problems. Optim Control Appl Methods 21(1):1–19

    Article  MATH  Google Scholar 

  83. Rauwolf GA, Coverstone-Carroll VL (1996) Near-optimal low-thrust orbit transfers generated by a genetic algorithm. J Spacecraft Rockets 33(6):859–862

    Google Scholar 

  84. Reddien GW (1979) Collocation at gauss points as a discretization in optimal control. SIAM J Control Optim 17(2):298–306

    Article  MATH  MathSciNet  Google Scholar 

  85. Ross IM, Fahroo F (2001) User’s manual for DIDO 2001 \(\alpha \): a MATLAB application for solving optimal control problems. Technical Report AAS-01-03, Department of Aeronautics and Astronautics, Naval Postgraduate School, Monterey, California

    Google Scholar 

  86. Rutquist P, Edvall M (2008) PROPT: MATLAB optimal control software. Tomlab Optimization Inc, Pullman, Washington

    Google Scholar 

  87. Sauer CG (1989) Midas—mission design and analysis software for the optimization of ballistic interplanetary trajectories. J Astronaut Sci 37(3):251–259

    Google Scholar 

  88. Schwartz A (1996) Theory and implementation of numerical methods based on runge-kutta integration for solving optimal control problems. PhD thesis, Department of Electrical Engineering, University of California, Berkeley

    Google Scholar 

  89. Schwartz A, Polak E (1996) Consistent approximations for optimal control problems based on runge-kutta integration. SIAM J Control Optim 34(4):1235–1269

    Article  MATH  MathSciNet  Google Scholar 

  90. Schwartz A, Polak E, Chen Y (1997) Recursive integration optimal trajectory solver (RIOTS\_95)

    Google Scholar 

  91. Stengel RF (1994) Optimal control and estimation. Dover Publications, Mineola, New York

    MATH  Google Scholar 

  92. Stoer J, Bulirsch R (2002) Introduction to numerical analysis. Springer, Berlin

    Google Scholar 

  93. Vinh N-X (1981) Optimal trajectories in atmospheric flight. Elsevier Science, New York

    Google Scholar 

  94. Vintner R (2000) Optimal control (systems and control: foundations and applications). Birkhäuser, Boston

    Google Scholar 

  95. Vlases WG, Paris SW, Lajoie RM, Martens MJ, Hargraves CR (1990) Optimal trajectories by implicit simulation. Technical report WRDC-TR-90-3056, Boeing Aerospace and Electronics, Wright-Patterson Air Force Base, Ohio

    Google Scholar 

  96. von Stryk O (1999) User’s guide for DIRCOL version 2.1: a direct collocation method for the numerical solution of optimal control problems. Technische Universitat Darmstadt, Darmstadt, Germany

    Google Scholar 

  97. Weinstock R (1974) Calculus of variations. Dover Publications, Mineola, New York

    MATH  Google Scholar 

  98. Williams P (2008) User’s guide for DIRECT 2.0. Royal Melbourne Institute of Technology, Melbourne, Australia

    Google Scholar 

  99. Wuerl A, Crain T, Braden E (2003) Genetic algorithm and calculus of variations-based trajectory optimization technique. J Spacecraft Rockets 40(6):882–888

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil V. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rao, A.V. (2014). Trajectory Optimization: A Survey. In: Waschl, H., Kolmanovsky, I., Steinbuch, M., del Re, L. (eds) Optimization and Optimal Control in Automotive Systems. Lecture Notes in Control and Information Sciences, vol 455. Springer, Cham. https://doi.org/10.1007/978-3-319-05371-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05371-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05370-7

  • Online ISBN: 978-3-319-05371-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics