Performance Analysis of Computing Servers — A Case Study Exploiting a New GSPN Semantics

  • Joost-Pieter Katoen
  • Thomas Noll
  • Thomas Santen
  • Dirk Seifert
  • Hao Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8376)

Abstract

Generalised Stochastic Petri Nets (GSPNs) are a widely used modeling formalism in the field of performance and dependability analysis. Their semantics and analysis is restricted to “well-defined”, i.e., confusion-free, nets. Recently, a new GSPN semantics has been defined that covers confused nets and for confusion-free nets is equivalent to the existing GSPN semantics. The key is the usage of a non-deterministic extension of CTMCs. A simple GSPN semantics results, but the question remains what kind of quantitative properties can be obtained from such expressive models. To that end, this paper studies several performance aspects of a GSPN that models a server system providing computing services so as to host the applications of diverse customers (“infrastructure as a service”). Employing this model with different parameter settings, we perform various analyses using the MaMa tool chain that supports the new GSPN semantics. We analyse the sensitivity of the GSPN model w.r.t. its major parameters –processing failure and machine suspension probabilities– by exploiting the native support of non-determinism. The case study shows that a wide range of performance metrics can still be obtained using the new semantics, albeit at the price of requiring more resources (in particular, computation time).

Keywords

Computing Services Model-Based Analysis Generalized Stochastic Petri Nets Markov Automata 

References

  1. 1.
    Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 90–109. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Katoen, J.P.: GSPNs revisited: Simple semantics and new analysis algorithms. In: Application of Concurrency to System Design (ACSD), pp. 6–11. IEEE (2012)Google Scholar
  3. 3.
    Guck, D., Hatefi, H., Hermanns, H., Katoen, J.-P., Timmer, M.: Modelling, reduction and analysis of Markov automata. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–71. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons (1995)Google Scholar
  5. 5.
    Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: LICS, pp. 342–351. IEEE Computer Society (2010)Google Scholar
  6. 6.
    Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci, L., Post, R., Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts, technology, and tools. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 483–505. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Ghosh, R., Naik, V.K., Trivedi, K.S.: Power-performance trade-offs in Iaas cloud: A scalable analytic approach. In: Dependable Systems and Networks Workshops, pp. 152–157 (2011)Google Scholar
  8. 8.
    Wolff, R.W.: Poisson arrivals see time averages. Operations Research 30, 223–231 (1982)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Dingle, N.J., Knottenbelt, W.J.: Automated customer-centric performance analysis of Generalised Stochastic Petri Nets using tagged tokens. In: PASM 2008. ENTCS, vol. 232, pp. 75–88 (2009)Google Scholar
  10. 10.
    Johnson, K., Reed, S., Calinescu, R.: Specification and quantitative analysis of probabilistic cloud deployment patterns. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 145–159. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Ghosh, R., Trivedi, K.S., Naik, V.K., Kim, D.S.: End-to-end performability analysis for Infrastructure-as-a-Service cloud: An interacting stochastic models approach. In: IEEE Pacific Rim International Symposium on Dependable Computing (PRDC), pp. 125–132. IEEE CS (2010)Google Scholar
  12. 12.
    Ghosh, R., Longo, F., Naik, V.K., Trivedi, K.S.: Quantifying resiliency of Iaas cloud. In: IEEE Symposium on Reliable Distributed Systems (SRDS), pp. 343–347. IEEE (2010)Google Scholar
  13. 13.
    Kikuchi, S., Matsumoto, Y.: Performance modeling of concurrent live migration operations in cloud computing systems using PRISM probabilistic model checker. In: IEEE Int. Conf. on Cloud Computing (IEEE CLOUD), pp. 49–56. IEEE (2011)Google Scholar
  14. 14.
    Xiong, K., Perros, H.G.: Service performance and analysis in cloud computing. In: IEEE Congress on Services, Part I (SERVICES I), pp. 693–700. IEEE Computer Society (2009)Google Scholar
  15. 15.
    Khazaei, H., Misic, J.V., Misic, V.B.: Performance analysis of cloud computing centers using M/G/m/m+r queuing systems. IEEE Trans. Parallel Distrib. Syst. 23, 936–943 (2012)CrossRefGoogle Scholar
  16. 16.
    Yang, B., Tan, F., Dai, Y.S., Guo, S.: Performance evaluation of cloud service considering fault recovery. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Computing. LNCS, vol. 5931, pp. 571–576. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Abate, J., Whitt, W.: The Fourier-series method for inverting transforms of probability distributions. Queueing Syst. 10, 5–87 (1992)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Harrison, P.G., Knottenbelt, W.J.: Passage time distributions in large Markov chains. In: Int. Conf. on Measurements and Modeling of Computer Systems (SIGMETRICS), pp. 77–85. ACM (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Joost-Pieter Katoen
    • 1
  • Thomas Noll
    • 1
  • Thomas Santen
    • 2
  • Dirk Seifert
    • 2
  • Hao Wu
    • 1
  1. 1.Software Modeling and Verification GroupRWTH Aachen UniversityGermany
  2. 2.Advanced Technology Labs (ATL) Europe, Microsoft ResearchAachenGermany

Personalised recommendations