Modeling of Loss Processes Arising from Packet Flows at Bottleneck Links

  • Natalia M. Markovich
  • Udo R. Krieger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8376)

Abstract

Packet video and voice are the dominant traffic sources in today’s Internet. Numerous studies have dealt with the influence of packet loss on video and voice quality. We elaborate on the root causes of packet loss in the Internet and show by statistical methods how that affects the quality of transmitted real-time data. We evaluate the mean number of lost packets and the distribution of bit loss as quality indices of packet transmission at a bottleneck link with insufficient bandwidth. The latter information regarding the risk to lose packets for a known bandwidth of a bottleneck link can be transferred to customers.

Keywords

Packet traffic in Internet geometric sums cluster of exceedances quantile equivalent capacity quality of transmission bit loss 

References

  1. 1.
    Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J.: Statistics of Extremes: Theory and Applications. Wiley, Chichester (2004)Google Scholar
  2. 2.
    Bon, J.-L., Kalashnikov, V.: Some estimates of geometric sums. Statistics and Probability Letters 55, 89–97 (2001)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Dán, G., Fodor, V.: Delay asymptotics and scalability for peer-to-peer live streaming. IEEE Trans. Parallel Distrib. 20(10), 1499–1511 (2009)CrossRefGoogle Scholar
  4. 4.
    D’Auria, B., Resnick, S.: Data network models of burstiness. Advances in Applied Probability 38, 373–404 (2006)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Ferro, C.A.T., Segers, J.: Inference for Clusters of Extreme Values. J. R. Statist. Soc. B 65, 545–556 (2003)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Guérin, R.A., Ahmadi, H., Naghshineh, M.: Equivalent Capacity and Its Application to Bandwidth Allocation in High-Speed Networks. IEEE Journal on Selected Areas in Communications 9(7), 968–981 (1991)CrossRefGoogle Scholar
  7. 7.
    Hoßfeld, T., Schatz, R., Krieger, U.: QoE of YouTube Video Streaming for Current Internet Transport Protocols. In: Fischbach, K., Krieger, U.R. (eds.) MMB & DFT 2014. LNCS, vol. 8376, pp. 139–153. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Kalashnikov, V.: Geometric Sums: Bounds for Rare Events with Applications. Kluwer Academic Publishers, Dordrecht (1997)CrossRefMATHGoogle Scholar
  9. 9.
    Liu, F., Li, Z.: A Measurement and Modeling Study of P2P IPTV Applications. In: CIS 1, pp. 114–119. IEEE Computer Society (2008)Google Scholar
  10. 10.
    Markovich, N.M., Krieger, U.R.: Statistical Inspection and Analysis Techniques for Traffic Data Arising from the Internet. In: HETNETs 2004, Special Issue on “Convergent Multi-Service Networks and Next Generation Internet: Performance Modelling and Evaluation”, pp. 72/1–72/9 (2006)Google Scholar
  11. 11.
    Markovich, N.M., Kilpi, J.: Bivariate statistical analysis of TCP-flow sizes and durations. Annals of Operations Research 170(1), 199–216 (2009)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Markovich, N.M.: Nonparametric Estimation of Univariate Heavy-Tailed Data. J. Wiley & Sons, Chichester (2007)CrossRefGoogle Scholar
  13. 13.
    Markovich, N.M., Krieger, U.R.: Statistical Analysis and Modeling of Skype VoIP Flows. Computer Communications (COMCOM) 31(Suppl. 1), 11–21 (2010)CrossRefGoogle Scholar
  14. 14.
    Markovich, N.M.: Quality Assessment of the Packet Transport of Peer-to-Peer Video Traffic in High-Speed Networks. Performance Evaluation 70, 28–44 (2013)CrossRefGoogle Scholar
  15. 15.
    Markovich, N.M.: Analysis of Packet Transmission in Peer-to-Peer Overlay Networks. In: Preprints of the International IFAC Conference on Manufacturing Modelling, Management, and Control, MIM 2013, Saint-Petersburg, Russia, June 19-21, pp. 956–961 (2013)Google Scholar
  16. 16.
    Markovich, N.M.: Modeling Clusters of Extreme Values. Extremes (2013) (accepted), doi:10.1007/s10687-013-0176-3Google Scholar
  17. 17.
    Richards, A.: On upper bounds for the tail distribution of geometric sums of subexponential random variables. Queueing Systems 62, 229–242 (2009)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Robinson, M.E., Tawn, J.A.: Extremal analysis of processes sampled at different frequences. Journal of the Royal Statistical Society Series B 62(1), 117–135 (2000)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Petrov, V.V.: Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Oxford University Press, New York (1995)MATHGoogle Scholar
  20. 20.
    Qiu, D., Srikant, R.: Modeling and Performance Analysis of BitTorrent-Like Peer-to-Peer Systems. In: Proc. ACM SIGCOMM, pp. 367–377 (2004)Google Scholar
  21. 21.
    van de Meent, R., Mandjes, M.: Evaluation of ‘user-oriented’ and ‘lack-box’ traffic models for link provisioning. In: Proceedings of the 1st EuroNGI Conference on Next Generation Internet Networks Traffic Engineering, Rome, Italy. IEEE (2005)Google Scholar
  22. 22.
    Weissman, I.: Estimation of parameters and large quantiles based on the k largest observations. Journal of American Statistical Association 73, 812–815 (1978)MATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Natalia M. Markovich
    • 1
  • Udo R. Krieger
    • 2
  1. 1.Institute of Control SciencesRussian Academy of SciencesMoscowRussia
  2. 2.Faculty Information Systems and Applied Computer ScienceOtto-Friedrich-UniversityBambergGermany

Personalised recommendations