Skip to main content

Abstract

Video streaming currently dominates global Internet traffic and will be of even increasing importance in the future. In this paper we assess the impact of the underlying transport protocol on the user perceived quality for video streaming using YouTube as example. In particular, we investigate whether UDP or TCP fits better for Video-on-Demand delivery from the end user’s perspective, when the video is transmitted over a bottleneck link. For UDP based streaming, the bottleneck link results in spatial and temporal video artifacts, decreasing the video quality. In contrast, in the case of TCP based streaming, the displayed content itself is not disturbed but playback suffers from stalling due to rebuffering. The results of subjective user studies for both scenarios are analyzed in order to assess the transport protocol influences on Quality of Experience of YouTube. To this end, application-level measurements are conducted for YouTube streaming over a network bottleneck in order to develop models for realistic stalling patterns. Furthermore, mapping functions are derived that accurately describe the relationship between network-level impairments and QoE for both protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cisco Systems Inc.: Cisco Visual Networking Index: Forecast and Methodology, 2009-2014 (June 2010)

    Google Scholar 

  2. Shiels, M.: YouTube at five- 2 bn views a day (2011)

    Google Scholar 

  3. Hoßfeld, T., Schatz, R., Seufert, M., Hirth, M., Zinner, T., Tran-Gia, P.: Quantification of YouTube QoE via Crowdsourcing. In: IEEE International Workshop on Multimedia Quality of Experience - Modeling, Evaluation, and Directions (MQoE 2011), Dana Point, CA, USA (December 2011)

    Google Scholar 

  4. De Simone, F., Tagliasacchi, M., Naccari, M., Tubaro, S., Ebrahimi, T.: H.264/AVC video database for the evaluation of quality metrics. In: Proceedings of the 35th International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010 (2010)

    Google Scholar 

  5. Alcock, S., Nelson, R.: Application flow control in youtube video streams. SIGCOMM Comput. Commun. Rev. 41 (April 2011)

    Google Scholar 

  6. Nygren, E., Sitaraman, R.K., Sun, J.: The akamai network: a platform for high-performance internet applications. SIGOPS Oper. Syst. Rev. 44 (August 2010)

    Google Scholar 

  7. Mori, T., Kawahara, R., Hasegawa, H., Shimogawa, S.: Characterizing traffic flows originating from large-scale video sharing services. In: Ricciato, F., Mellia, M., Biersack, E. (eds.) TMA 2010. LNCS, vol. 6003, pp. 17–31. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Adhikari, V., Jain, S., Zhang, Z.: Where do you tube? uncovering youtube server selection strategy. In: IEEE ICCCN 2011 (July 2011)

    Google Scholar 

  9. Hoßfeld, T., Zinner, T., Schatz, R., Seufert, M., Tran-Gia, P.: Transport Protocol Influences on YouTube QoE. Technical Report 482, Uni. Würzburg (July 2011)

    Google Scholar 

  10. Hoßfeld, T., Schatz, R., Biersack, E., Plissonneau, L.: Internet Video Delivery in YouTube: From Traffic Measurements to Quality of Experience. In: Biersack, E., Callegari, C., Matijasevic, M. (eds.) Data Traffic Monitoring and Analysis: From Measurement, Classification and Anomaly Detection to Quality of Experience. Springer’s Computer Communications and Networks series (2013)

    Google Scholar 

  11. Hirth, M., Hoßfeld, T., Tran-Gia, P.: Anatomy of a Crowdsourcing Platform - Using the Example of Microworkers.com. In: Workshop on Future Internet and Next Generation Networks (FINGNet), Seoul, Korea (June 2011)

    Google Scholar 

  12. Chen, K., Chang, C., Wu, C., Chang, Y., Lei, C., Sinica, C.: Quadrant of Euphoria: A Crowdsourcing Platform for QoE Assessment. IEEE Network 24(2) (March 2010)

    Google Scholar 

  13. Hirth, M., Hoßfeld, T., Tran-Gia, P.: Cost-Optimal Validation Mechanisms and Cheat-Detection for Crowdsourcing Platforms. In: Workshop on Future Internet and Next Generation Networks, Seoul, Korea (June 2011)

    Google Scholar 

  14. Hoßfeld, T., Keimel, C., Hirth, M., Gardlo, B., Habigt, J., Diepold, K., Tran-Gia, P.: CrowdTesting: A Novel Methodology for Subjective User Studies and QoE Evaluation. Technical Report 486, University of Würzburg (February 2013)

    Google Scholar 

  15. ITU-T Rec. P.800.1: Mean opinion score (mos) terminology (February 2003)

    Google Scholar 

  16. Fiedler, M., Hoßfeld, T., Tran-Gia, P.: A Generic Quantitative Relationship between Quality of Experience and Quality of Service. IEEE Network Special Issue on Improving QoE for Network Services (June 2010)

    Google Scholar 

  17. De Simone, F., Naccari, M., Tagliasacchi, M., Dufaux, F., Tubaro, S., Ebrahimi, T.: Subjective assessment of H.264/AVC video sequences transmitted over a noisy channel. In: Proceedings of the First International Workshop on Quality of Multimedia Experience, QoMEX 2009 (2009)

    Google Scholar 

  18. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling tcp throughput: a simple model and its empirical validation. SIGCOMM Comput. Commun. Rev. 28 (October 1998)

    Google Scholar 

  19. Koponen, T., et al.: Architecting for innovation. SIGCOMM Comput. Commun. Rev. 41 (2011)

    Google Scholar 

  20. Sieber, C., Hoßfeld, T., Zinner, T., Tran-Gia, P., Timmerer, C.: Implementation and User-centric Comparison of a Novel Adaptation Logic for DASH with SVC. In: IFIP/IEEE International Workshop on Quality of Experience Centric Management (QCMan), Ghent, Belgium (May 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hoßfeld, T., Schatz, R., Krieger, U.R. (2014). QoE of YouTube Video Streaming for Current Internet Transport Protocols. In: Fischbach, K., Krieger, U.R. (eds) Measurement, Modelling, and Evaluation of Computing Systems and Dependability and Fault Tolerance. MMB&DFT 2014. Lecture Notes in Computer Science, vol 8376. Springer, Cham. https://doi.org/10.1007/978-3-319-05359-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05359-2_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05358-5

  • Online ISBN: 978-3-319-05359-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics