Influence of Stresses on Magnetic B-H Characteristics of X30Cr13 Corrosion Resisting Martensitic Steel

  • Dorota Jackiewicz
  • Roman Szewczyk
  • Jacek Salach
  • Adam Bieńkowski
  • Maciej Kachniarz
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 267)

Abstract

Paper presents the frame-shaped cores based methodology of testing of magnetoelastic characteristics of energetic steels such as X30Cr13 steel, subjected to tensile stresses. In presented method, the magnetic circuit of the sample is closed. For this reason, the results of magnetoelastic investigation are independent of the shape of the sample. To validate the proposed method, the influence of tensile stresses on B(H) hysteresis loop of X30Cr13 martensitic corrosion resistant steel was carried out. On the base of these result, clear criteria for non-destructive assessment of mechanical stresses in the material were determined.

Keywords

magnetoelastic effect corrosion resistant steel stress assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aphrodite, K., Evangelos, H.: Stress Dependent Magnetization and Vector Preisach Modeling in Low Carbon Steels. IEEE Transactions on Magnetics 48, 1433–1436 (2012)CrossRefGoogle Scholar
  2. 2.
    Stoklosa, Z., Rasek, J., Kwapulinski, P., Badura, G., Haneczok, G., Pająk, L., Lelątko, J., Kolano-Burian, A.: Magnetic, Electrical and Plastic Properties of Fe76Nb2Si13B9, Fe75Ag1Nb2Si13B9 and Fe75Cu1Nb2Si13B9 Amorphous Alloys. Journal of Alloys and Compounds 509, 9050–9054 (2011)CrossRefGoogle Scholar
  3. 3.
    Jiles, D.C.: Introduction to Magnetism and Magnetic Materials. Chapman&Hall, London (1998)Google Scholar
  4. 4.
    Bieńkowski, A., Szewczyk, R.: The Possibility of Utilizing the High Permeability Magnetic Materials in Construction of Magnetoelastic Stress and Force Sensors. Sensors and Actuators A113, 270–276 (2004)Google Scholar
  5. 5.
    Mamalis, A.G., Hristoforou, E.: On the Magnetic and Magnetoelastic Uniformity Measurements on Fe78Si7B15 Amorphous Ribbons and Wires. Materials Science Forum 670, 87–91 (2010)CrossRefGoogle Scholar
  6. 6.
    Hlenschi, C., Corodeanu, S., Chiriac, H.: Magnetoelastic Sensors for the Detections of Pulse Waves. IEEE Transactions on Magnetics 49, 117–119 (2013)CrossRefGoogle Scholar
  7. 7.
    Sablik, M.J., Augustyniak, B., Chmielewski, M.: Modeling Biaxial Stress Effects on Magnetic Hysteresis in Steel with the Field and Stress Axes Noncoaxial. Journal of Applied Physics 85, 4391 (1999)CrossRefGoogle Scholar
  8. 8.
    Wang, G.D., Wang, M.L., Zhao, Y., Chen, Y., Sun, B.N.: Application of magnetoelastic stress sensors in large steel cables. Smart Structures and Systems 2, 155–169 (2006)CrossRefGoogle Scholar
  9. 9.
    Song, Y.S., Ding, Y.L.: Fatigue monitoring and analysis of orthotropic steel deck considering traffic volume and ambient temperature. Science China-Technological Sciences 56, 1758–1766 (2013)CrossRefGoogle Scholar
  10. 10.
    Solomon, N., Solomon, I.: Deformation Induced Martensite in AISI 316 Stainless Steel. Revista de Metalurgia 46, 121–128 (2010)CrossRefGoogle Scholar
  11. 11.
    Ueji, R., Takagi, Y., Tsuchida, N., Shinagawa, K., Tanaka, Y., Mizuguchi, T.: Crystallographic Orientation Dependence of ε Martensite Transformation During Tensile Deforma-tion of Polycrystalline 30% Mn Austenitic Steel. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 576, 14–20 (2013)CrossRefGoogle Scholar
  12. 12.
    Hilkhuijsen, P., Geijselaers, H., Bor, T., Perdahcioglu, E., Boogaard, A., van den Akkerman, R.: Strain Direction Dependency of Martensitic Transformation in Austenitic Stainless Steels: The Effect of Gamma-Texture. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 573, 100–105 (2013)CrossRefGoogle Scholar
  13. 13.
    Mohri, K., Sudoh, E.: New Extensometer Using Amorphous Magnetostrictive Ribbon Wound Cores. IEEE Transactions on Magnetics 17, 1317–1319 (1981)CrossRefGoogle Scholar
  14. 14.
    Bieńkowski, A., Szewczyk, R., Salach, J., Kolano-Burian, A.: The Magnetoelastic Villari Effect in Fe25Ni55Si10B10 Amorphous Alloy Subjected to Thermal Treatment. Reviews on Advanced Materials Science 18, 561–564 (2008)Google Scholar
  15. 15.
    Bienkowski, A., Szewczyk, R., Kolano, R.: Influence of thermal treatment on magnetoelastic Villari effect in Fe78Si13B9 amorphous alloy. In: 11th International Conference on Rapidly Quenched and Metastable Materials, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, vol. 375, pp. SI: 1024–SI: 1026 (2004)Google Scholar
  16. 16.
    Salach, J., Bieńkowski, A., Szewczyk, R., Jackiewicz, D., Frydrych, P., Kolano-Burian, A.: Utilizing of magnetic amorphous alloys in magnetoelastic tensile stress sensors. Pomiary Automatyka Robotyka 16(2), 556–560 (2012) (in Polish)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dorota Jackiewicz
    • 1
  • Roman Szewczyk
    • 2
  • Jacek Salach
    • 2
  • Adam Bieńkowski
    • 2
  • Maciej Kachniarz
    • 1
  1. 1.Industrial Research Institute for Automation and MeasurementsWarsawPoland
  2. 2.Institute of Metrology and Biomedical EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations