Advertisement

Chaos Synchronization of the Modified Van der Pol-Duffing Oscillator of Fractional Order

  • Mikołaj Busłowicz
  • Adam Makarewicz
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 267)

Abstract

The paper considers the modified Van der Pol-Duffing oscillator of fractional order. Chaotic behavior of the system is analyzed and the problem of synchronization of two modified Van der Pol-Duffing systems via master/slave configuration with linear coupling is considered. A simple sufficient condition for synchronization is proposed. This condition is based on the chaos stabilization method derived by Jiang et. al. [Chaos Solitons and Fractals, 2003] for the global synchronization of two coupled general chaotic integer order systems with a unidirectional linear error feedback coupling. Numerical simulations show the effectiveness of theoretical considerations.

Keywords

fractional Van der Pol-Duffing system chaos synchronization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Busłowicz, M.: Stability of State-Space Models of Linear Continuous-time Fractional Order Systems. Acta Mechanica et Automatica 5, 15–22 (2011)Google Scholar
  2. 2.
    Busłowicz, M., Makarewicz, A.: Synchronization of the Chaotic Ikeda Systems of Fractional Order. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds.) Theory & Appl. of Non-integer Order Syst. LNEE, vol. 257, pp. 261–269. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Deleanu, D.: On a Sufficient Criterion for Global Synchronization in Chaotic Systems. In: Kanarachos, A. (ed.) Recent Advances in Telecommunications, Signals and Systems, pp. 95–100. WSEAS Press (2013)Google Scholar
  4. 4.
    Dibakar, G.A., Chowdhury, R., Saha, P.: On the Various Kinds of Synchronization in Delayed Duffing-Van der Pol System. Commun. Nonlinear Sci. Numer. Simulat. 13, 790–803 (2008)CrossRefMATHGoogle Scholar
  5. 5.
    Gantmacher, F.R.: The Theory of Matrices. Nauka, Moscow (1966) (in Russian)Google Scholar
  6. 6.
    He, G.T., Luo, M.: Dynamic Behavior of Fractional Order Duffing Chaotic System and its Synchronization via Singly Active Control. Appl. Math. Mech. 33(5), 567–582 (2012)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Jiang, G.-P., Tang, W.K.-S., Chen, G.: A Simple Global Synchronization criterion for Coupled Chaotic Systems. Chaos Solitons and Fractals 15, 925–935 (2003)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Kaczorek, T.: Selected Problems of Fractional Systems Theory. LNCIS, vol. 411. Springer, Heidelberg (2011)MATHGoogle Scholar
  9. 9.
    Kenfack, G., Tiedeu, A.: Secured Transmission of ECG Signals: Numerical and Electronic Simulations. Journal of Signal and Information Processing 4, 158–169 (2013)CrossRefGoogle Scholar
  10. 10.
    Kimiaeifar, A., Saidi, A.R., Sohouli, A.R., Ganji, D.D.: Analysis of Modified Van der Pol’s Oscillator Using He’s Parameter-Expanding Methods. Current Applied Physics 10, 279–283 (2010)CrossRefGoogle Scholar
  11. 11.
    Mahmoud, G.M., Aly, S.A., Farghaly, A.A.: On Chaos Synchronization of a Complex Two Coupled Dynamos System. Chaos, Solitons and Fractals 33, 178–187 (2007)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Matouk, A.E.: Chaos, Feedback Control and Synchronization of a Fractional-Order Modified Autonomous Van der Pol–Duffing Circuit. Commun. Nonlinear Sci. Numer. Simulat. 16, 975–986 (2011)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Monje, C., Chen, Y., Vinagre, B., Xue, D., Feliu, V.: Fractional-Order Systems and Controls. Springer, London (2010)CrossRefMATHGoogle Scholar
  14. 14.
    Menacer, T., Hamri, N.: Synchronization of Different Chaotic Fractional-Order Systems via Approached Auxiliary System the Modified Chua Oscillator and the Modified Van der Pol-Duffing Oscillator. Electronic Journal of Theoretical Physics, EJTP 8(25), 253–266 (2011)Google Scholar
  15. 15.
    Ostalczyk, P.: Epitome of the Fractional Calculus, Theory and its Applications in Automatics. Publishing Department of Technical University of Łódź, Łódź (2008) (in Polish)Google Scholar
  16. 16.
    Petras, I.: Fractional-Order Nonlinear Systems Modeling, Analysis and Simulation. Higher Education Press, Springer, Beijing, Heidelberg (2011)CrossRefMATHGoogle Scholar
  17. 17.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATHGoogle Scholar
  18. 18.
    Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds.): Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering. Springer, London (2007)MATHGoogle Scholar
  19. 19.
    Sheu, L.J., Chen, W.C., Chen, Y.C., Wenig, W.T.: A Two-Channel Secure Communication Using Fractional Chaotic Systems. World Academy of Science, Engineering and Technology 65, 1057–1061 (2010)Google Scholar
  20. 20.
    Suchorsky, -M.K., Rand, R.H.: A Pair of Van der Pol Oscillators Coupled by Fractional Derivatives. Nonlinear Dyn. 69, 313–324 (2012)Google Scholar
  21. 21.
    Wang, Y., Yin, X., Liu, Y.: Control Chaos in System with Fractional Order. Journal of Modern Physics 3, 496–501 (2012)CrossRefGoogle Scholar
  22. 22.
    Valério, D.: Ninteger v. 2.3 - Fractional Control Toolbox for MatLab, User and Programmer Manual, Technical University of Lisbona, Lisbona (2005), http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm
  23. 23.
    Varga, R.S.: Gershgorin and His Circles. Springer, Berlin (2004)CrossRefGoogle Scholar
  24. 24.
    Vincent, U.E., Odunaike, R.K., Laoye, J.A., Gbindinninuola, A.A.: Adaptive Backstepping Control and Synchronization of a Modified and Chaotic Van der Pol-Duffing Oscillator. J. Control Theory Appl. 9(2), 273–277 (2011)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringBiałystok University of TechnologyBialystokPoland
  2. 2.Doctoral Study, Faculty of Electrical EngineeringBiałystok University of TechnologyBialystokPoland

Personalised recommendations