Advertisement

Computational Problems Connected with Jiles-Atherton Model of Magnetic Hysteresis

  • Roman Szewczyk
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 267)

Abstract

Paper presents the most important problems connected with Jiles-Atherton model of magnetic B(H) hysteresis. These problems are mainly caused by accuracy of numerical integration as well as methods of solving the ordinary differential equations. Paper presents comparison of accuracy of calculation with MATLAB and OCTAVE for both Windows 7 and Scientific Linux 6.3. Moreover, the analyse of time efficiency is presented. On the base of numerical errors analyses and benchmarking, the guidelines for calculation of Jiles-Atherton model are given.

Keywords

ordinary differential equation numerical error analyse accuracy magnetization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jiles, D.C., Atherton, D.: Theory of ferromagnetic hysteresis. Journal of Applied Physics 55, 2115 (1984)CrossRefGoogle Scholar
  2. 2.
    Jiles, D.C., Atherton, D.: Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials 61, 48 (1986)CrossRefGoogle Scholar
  3. 3.
    Venkataraman, R., Krishnaprasad, P.: Qualitative analysis of a bulk ferromagnetic hysteresis model. In: Proceedings of the 37th IEEE Conference on Decision and Control, p. 2443 (1998)Google Scholar
  4. 4.
    Szewczyk, R.: Modelling of the magnetic and magnetostrictive properties of high permeability Mn-Zn ferrites. PRAMANA-Journal of Physics 67, 1165–1171 (2006)CrossRefGoogle Scholar
  5. 5.
    Chwastek, K., Szczyglowski, J.: Estimation methods for the Jiles-Atherton model parameters – a review. Electrical Review (Przeglad Elektrotechniczny) 84, 145 (2008)Google Scholar
  6. 6.
    Pop, N., Caltun, O.: Jiles-Atherton model used in the magnetization process study for the composite magnetoelectric materials based on cobalt ferrite and barium titanate. Canadian Journal of Physics 89, 787 (2011)CrossRefGoogle Scholar
  7. 7.
    Baghel, A., Kulkarni, S.: Hysteresis modeling of the grain-oriented laminations with inclusion of crystalline and textured structure in a modified Jiles-Atherton model. Journal of Applied Physics 113, 043908 (2013)Google Scholar
  8. 8.
    Stoklosa, Z., Rasek, J., Kwapulinski, P.: Magnetic, electrical and plastic properties of Fe76Nb2Si13B9, Fe75Ag1Nb2Si13B9 and Fe75Cu1Nb2Si13B9 amorphous alloys. Journal of Alloys and Compounds 509, 9050 (2011)CrossRefGoogle Scholar
  9. 9.
    Bienkowski, A., Szewczyk, R., Kolano, R.: Influence of thermal treatment on magnetoelastic Villari effect in Fe78Si13B9 amorphous alloy. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 375, 1024–1026 (2004)CrossRefGoogle Scholar
  10. 10.
    Hamimid, M., Mimoune, S., Feliachi, M.: Evaluation of minor hysteresis loops using Langevin transforms in modified inverse Jiles-Atherton model. Physica B-Condensed Matter 429, 115 (2013)CrossRefGoogle Scholar
  11. 11.
    Jackiewicz, D., Szewczyk, R., Salach, J.: Modelowanie charakterystyk magnesowania stali konstrukcyjnych. Pomiary Automatyka Robotyka 2, 552 (2012)Google Scholar
  12. 12.
    Andrei, P., Dimian, M.: Clockwise Jiles-Atherton Hysteresis Model. IEEE Transactions on Magnetics 49, 3183 (2013)CrossRefGoogle Scholar
  13. 13.
    Pop, N.C., Caltun, O.F.: Using the Jiles Atherton model to analyze the magnetic properties of magnetoelectric materials (BaTiO3)(x) (CoFe2O4)(1-x). Indian Journal of Physics 86, 283–289 (2012)CrossRefGoogle Scholar
  14. 14.
    Gorecki, K., Detka, K.: Electrothermal model of choking-coils for the analysis of dc-dc converters. Materials Science and Engineering B-Advanced Functional Solid-State Materials 177, 1248 (2012)CrossRefGoogle Scholar
  15. 15.
    Raghunathan, A., Klimczyk, P., Melikhov, Y.: Application of Jiles-Atherton Model to Stress Induced Magnetic Two-Phase Hysteresis. IEEE Transactions on Magnetics 49, 3187 (2013)CrossRefGoogle Scholar
  16. 16.
    Jiles, D.C.: Introduction to Magnetism and Magnetic Materials. Chapman and Hall, London (1998)Google Scholar
  17. 17.
    Ramesh, A., Jiles, D.C., Bi, Y.: Generalization of hysteresis modeling to anisotropic materials. Journal of Applied Physics 81, 5585 (1997)CrossRefGoogle Scholar
  18. 18.
    Ramesh, A., Jiles, D., Roderik, J.: A model of anisotropic anhysteretic magnetization. IEEE Transactions on Magnetics 32, 4234 (1996)CrossRefGoogle Scholar
  19. 19.
    Chwastek, K., Szczygłowski, J.: Identification of a hysteresis model parameters with genetic algorithms. Mathematics and Computers in Simulation 71, 206 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Davidson, R., Charap, S.: Combined vector hysteresis models and applications. IEEE Transactions on Magnetics 32, 4198 (1996)CrossRefGoogle Scholar
  21. 21.
    Tellini, B., Giannetti, R., Lizon-Martinez, S., Marracci, M.: Characterization of the Accommodation Effect in Soft Hysteretic Materials via Sensorless Measurement Technique. IEEE Transactions on Instrumentation and Measurement 58, 2807 (2009)CrossRefGoogle Scholar
  22. 22.
    Della Torre, E.: A Preisach model for accommodation. IEEE Transactions on Magnetics 30, 2701 (1994)CrossRefGoogle Scholar
  23. 23.
    Shampine, L.F.: Vectorized Adaptive Quadrature in MATLAB. Journal of Computational and Applied Mathematics 211, 131 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Calkins, F., Smith, R., Flatau, A.: Energy-based hysteresis model for magnetostrictive transducers. IEEE Transactions on Magnetics 36, 429 (2000)CrossRefGoogle Scholar
  25. 25.
    Szewczyk, R.: Modelling of the magnetic and magnetostrictive properties of high permeability Mn-Zn ferrites. J. of Physics 67(6), 1165–1171 (2006)Google Scholar
  26. 26.
    Szewczyk, R., Bienkowski, A.: Magnetoelastic Villari effect in high-permeability Mn-Zn ferrites and modeling of this effect. In: Conference: 15th International Symposium on Soft Magnetic Materials (2001); J. of Magnetism and Magnetic Materials 254, SI 284– SI 286 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Industrial Research Institute for Automation and MeasurmentsWarsawPoland

Personalised recommendations