Experimental Methods and Setup

Part of the Springer Theses book series (Springer Theses)


The experiments presented in this thesis deal with the molecular dynamics following strong field ionisation. This implies that the resulting reaction products—molecular fragments and parent ions—always include charged particles.


Probe Pulse Beam Combiner Source Chamber Focal Spot Diameter Interaction Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.N.R. Ashfold, N.H. Nahler, A.J. Orr-Ewing, O.P.J. Vieuxmaire, R.L. Toomes, T.N. Kitsopoulos, I.A. Garcia, D.A. Chestakov, S. Wu, D.H. Parker, Imaging the dynamics of gas phase reactions. Phys. Chem. Chem. Phys. 8(1), 26 (2006)Google Scholar
  2. 2.
    M.N.R. Ashfold, J.D. Howe, Multiphoton spectroscopy of molecular species. Annu. Rev. Phys. Chem. 45(1), 57–82 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    A.I. Chichinin, K.H. Gericke, S. Kauczok, C. Maul, Imaging chemical reactions—3D velocity mapping. Int. Rev. Phys. Chem. 28(4), 607 (2009)CrossRefGoogle Scholar
  4. 4.
    D.W. Chandler, P.L. Houston, Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87, 1445–1447 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    M. Lampton, O. Siegmund, R. Raffanti, Delay line anodes for microchannel-plate spectrometers. Rev. Sci. Instrum. 58, 2298–2305 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    O. Jagutzki, V. Mergel, K. Ullmann-Pfleger, L. Spielberger, U. Spillmann, R. D/"orner, H. Schmidt-B/"ocking, A broad-application microchannel-plate detector system for advanced particle or photon detection tasks: large area imaging, precise multi-hit timing information and high detection rate. Nucl. Instrum. Methods Phys. Res., Sect. A 477, 244–249 (2002)Google Scholar
  7. 7.
    A.E. Cameron, D.F. Eggers, An ion “Velocitron". Rev. Sci. Instrum. 19, 605–607 (1948)ADSCrossRefGoogle Scholar
  8. 8.
    W.C. Wiley, I.H. McLaren, Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26(12), 1150–1157 (1955)ADSCrossRefGoogle Scholar
  9. 9.
    J.H. Posthumus, The dynamics of small molecules in intense laser fields. Rep. Prog. Phys. 67(5), 623–665 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    N. Marable, G. Sanzone, High-resolution time-of-flight mass spectrometry: theory of the impulsed-focused time-of-flight mass spectrometer. Int. J. Mass Spectrom. Ion Phys. 13, 185–194 (1974)CrossRefGoogle Scholar
  11. 11.
    B.A. Mamyrin, D.V. Shmikk, The linear mass reflectron. Sov. Phys. JETP 49(5), 762–764 (1979)ADSGoogle Scholar
  12. 12.
    P. Hansch, L.D.V. Woerkom, High-precision intensity-selective observation of multiphoton ionization: a new method of photoelectron spectroscopy. Opt. Lett. 21(16), 1286–1288 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    L. Robson, K.W. Ledingham, P. McKenna, T. McCanny, S. Shimizu, J.M. Yang, C. Wahlstrm, R. Lopez-Martens, K. Varju, P. Johnsson, J. Mauritsson, Volumetric intensity dependence on the formation of molecular and atomic ions within a high intensity laser focus. J. Am. Soc. Mass Spectrom. 16, 82–89 (2005)CrossRefGoogle Scholar
  14. 14.
    M.A. Walker, P. Hansch, L.D. Van Woerkom, Intensity-resolved multiphoton ionization: circumventing spatial averaging. Phys. Rev. A 57, R701–R704 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    W.A. Bryan, S.L. Stebbings, J. McKenna, E.M.L. English, M. Suresh, J. Wood, B. Srigengan, I.C.E. Turcu, J.M. Smith, E.J. Divall, C.J. Hooker, A.J. Langley, J.L. Collier, I.D. Williams, W.R. Newell, Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization. Nat. Phys. 2(6), 379–383 (2006)CrossRefGoogle Scholar
  16. 16.
    J. McKenna, M. Suresh, B. Srigengan, I.D. Williams, W.A. Bryan, E.M.L. English, S.L. Stebbings, W.R. Newell, I.C.E. Turcu, J.M. Smith, E.J. Divall, C.J. Hooker, A.J. Langley, J.L. Collier, Rescattering-enhanced dissociation of a molecular ion. Phys. Rev. A 74, 043409 (2006)Google Scholar
  17. 17.
    L.J. Frasinski, K. Codling, P.A. Hatherly, Covariance mapping: a correlation method applied to multiphoton multiple ionization. Science 246, 1029–1031 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    K. Codling, L.J. Frasinski, Dissociative ionization of small molecules in intense laser fields. J. Phys. B: At. Mol. Opt. Phys. 26, 783–809 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    L.J. Frasinski, P.A. Hatherly, K. Codling, M. Larsson, A. Persson, C.G. Wahlstrom, Multielectron dissociative ionization of co\(_2\) in intense laser fields. J. Phys. B: At. Mol. Opt. Phys. 27, L109–L114 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    L.J. Frasinski, M. Stankiewicz, P.A. Hatherly, G.M. Cross, K. Codling, A.J. Langley, W. Shaikh, Molecular h\(_2\) in intense laser fields probed by electron-electron, electron-ion, and ion-ion covariance techniques. Phys. Rev. A 46, R6789–R6792 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    J.L. Hansen, J.H. Nielsen, C.B. Madsen, A.T. Lindhardt, M.P. Johansson, T. Skrydstrup, L.B. Madsen, H. Stapelfeldt, Control and femtosecond time-resolved imaging of torsion in a chiral molecule, J. Chem. Phys. 136, 204310–204310-10 (2012)Google Scholar
  22. 22.
    A.T.J.B. Eppink, D.H. Parker, Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68(9), 3477 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    M.J.J. Vrakking, An iterative procedure for the inversion of two-dimensional ion/photoelectron imaging experiments. Rev. Sci. Instrum. 72, 4084–4089 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    V. Dribinski, A. Ossadtchi, V.A. Mandelshtam, H. Reisler, Reconstruction of abel-transformable images: the gaussian basis-set expansion abel transform method. Rev. Sci. Instrum. 73, 2634–2642 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    G.A. Garcia, L. Nahon, I. Powis, Two-dimensional charged particle image inversion using a polar basis function expansion. Rev. Sci. Instrum. 75, 4989–4996 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    M. Wollenhaupt, M. Krug, J.Köhler, T. Bayer, C. Sarpe-Tudoran, T. Baumert, Three-dimensional tomographic reconstruction ofultrashort free-electron wave packets. Appl. Phys. B 95, 647–651 (2009)Google Scholar
  27. 27.
    J. Maurer, D. Dimitrovski, L. Christensen, L.B. Madsen, H. Stapelfeldt, Molecular-frame 3D photoelectron momentum distributions by tomographic reconstruction. Phys. Rev. Lett. 109, 123001 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    S. Kauczok, N.G/"adecke, A.I. Chichinin, M. Veckenstedt, C. Maul, K.-H. Gericke, Three-dimensional velocity map imaging: setup and resolution improvement compared to three-dimensional ion imaging, Rev. Sci. Instrum. 80, 083301–083301-10 (2009)Google Scholar
  29. 29.
    D. Strasser, X. Urbain, H.B. Pedersen, N. Altstein, O. Heber, R. Wester, K.G. Bhushan, D. Zajfman, An innovative approach to multiparticle three-dimensional imaging. Rev. Sci. Instrum. 71, 3092–3098 (2000)Google Scholar
  30. 30.
    L. Dinu, A.T.J.B. Eppink, F. Rosca-Pruna, H.L. Offerhaus, W.J. van der Zande, M.J.J. Vrakking, Application of a time-resolved event counting technique in velocity map imaging. Rev. Sci. Instrum. 73, 4206–4213 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    J. Eland, Photoelectron-photoion coincidence spectroscopy: I. basic principles and theory. Int. J. Mass Spectrom. Ion Phys. 8, 143–151 (1972)CrossRefGoogle Scholar
  32. 32.
    C. Danby, J. Eland, Photoelectron-photoion coincidence spectroscopy: II. design and performance of a practical instrument. Int. J. Mass Spectrom. Ion Phys. 8, 153–161 (1972)CrossRefGoogle Scholar
  33. 33.
    R.E. Continetti, Coincidence spectroscopy. Annu. Rev. Phys. Chem. 52(1), 165–192 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L.P.H. Schmidt, H. Schmidt-Böcking, Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463–1545 (2003)Google Scholar
  35. 35.
    J. Ullrich, R. Moshammer, M. Unverzagt, W. Schmidt, P. Jardin, R. Olson, R. Dorner, V. Mergel, H. Schmidt-Bocking, Ionization collision dynamics in 3.6 MeV/u ni24+ on he encounters. Nucl. Instrum. Methods Phys. Res., Sect. B 98, 375–379 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    R. Moshammer, M. Unverzagt, W. Schmitt, J. Ullrich, H. Schmidt-Bocking, A 4\(\pi \) recoil-ion electron momentum analyzer: a high-resolution microscope for the investigation of the dynamics of atomic, molecular and nuclear reactions. Nucl. Instrum. Methods Phys. Res., Sect. B 108, 425–445 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    G. Scoles, D. Bassi, U. Buck, D.C. Laine (eds.), Atomic and Molecular Beam Methods, vol. 1. (Oxford University Press, Oxford, 1988)Google Scholar
  38. 38.
    R.D. Zucker, O. Biblarz, Fundamentals of gas dynamics, 2nd edn. (Wiley, 2002)Google Scholar
  39. 39.
    D.M. Lubman, C.T. Rettner, R.N. Zare, How isolated are molecules in a molecular beam, J. Phys. Chem. (United States) 86, 7 (1982)Google Scholar
  40. 40.
    O.F. Hagena, Cluster formation in expanding supersonic jets: Effect of pressure, temperature, nozzle size, and test gas. J. Chem. Phys. 56, 1793 (1972)ADSCrossRefGoogle Scholar
  41. 41.
    M. Hillenkamp, S. Keinan, U. Even, Condensation limited cooling in supersonic expansions. J. Chem. Phys. 118, 8699–8705 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    J. Wörmer, V. Guzielski, J. Stapelfeldt, T. Müller, Fluorescence excitation spectroscopy of xenon clusters in the VUV. Chem. Phys. Lett. 159, 321–326 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    R. Campargue, Progress in overexpanded supersonic jets and skimmed molecular beams in free-jet zones of silence. J. Phys. Chem. 88, 4466–4474 (1984)CrossRefGoogle Scholar
  44. 44.
    V. Kumarappan, C.Z. Bisgaard, S.S. Viftrup, L. Holmegaard, H. Stapelfeldt, Role of rotational temperature in adiabatic molecular alignment. J. Chem. Phys. 125(19), 194309 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    A. Miffre, M. Jacquey, M. Buchner, G. Trenec, J. Vigue, Parallel temperatures in supersonic beams: ultra cooling of light atoms seeded in a heavier carrier gas. J. Phys. Chem. 122, 094308 (2004)CrossRefGoogle Scholar
  46. 46.
    A.E. Siegman, Lasers, new edn. (University Science Books, London, 1990)Google Scholar
  47. 47.
    M.A. de Araújo, R. Silva, E. de Lima, D.P. Pereira, P.C. de Oliveira, Measurement of gaussian laser beam radius using the knife-edge technique: improvement on data analysis. Appl. Opt. 48, 393–396 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    S.M. Hankin, D.M. Villeneuve, P.B. Corkum, D.M. Rayner, Intense-field laser ionization rates in atoms and molecules. Phys. Rev. A 64, 013405 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    E.A. Gibson, A. Paul, N. Wagner, R. Tobey, S. Backus, I.P. Christov, M.M. Murnane, H.C. Kapteyn, High-order harmonic generation up to 250 ev from highly ionized argon. Phys. Rev. Lett. 92(3), 033001 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    E. Hecht, Optics, 4th edn. (Addison-Wesley, 2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsImperial CollegeLondonUK

Personalised recommendations