Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The experiments presented in this thesis deal with the molecular dynamics following strong field ionisation. This implies that the resulting reaction products—molecular fragments and parent ions—always include charged particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.N.R. Ashfold, N.H. Nahler, A.J. Orr-Ewing, O.P.J. Vieuxmaire, R.L. Toomes, T.N. Kitsopoulos, I.A. Garcia, D.A. Chestakov, S. Wu, D.H. Parker, Imaging the dynamics of gas phase reactions. Phys. Chem. Chem. Phys. 8(1), 26 (2006)

    Google Scholar 

  2. M.N.R. Ashfold, J.D. Howe, Multiphoton spectroscopy of molecular species. Annu. Rev. Phys. Chem. 45(1), 57–82 (1994)

    Article  ADS  Google Scholar 

  3. A.I. Chichinin, K.H. Gericke, S. Kauczok, C. Maul, Imaging chemical reactions—3D velocity mapping. Int. Rev. Phys. Chem. 28(4), 607 (2009)

    Article  Google Scholar 

  4. D.W. Chandler, P.L. Houston, Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87, 1445–1447 (1987)

    Article  ADS  Google Scholar 

  5. M. Lampton, O. Siegmund, R. Raffanti, Delay line anodes for microchannel-plate spectrometers. Rev. Sci. Instrum. 58, 2298–2305 (1987)

    Article  ADS  Google Scholar 

  6. O. Jagutzki, V. Mergel, K. Ullmann-Pfleger, L. Spielberger, U. Spillmann, R. D/"orner, H. Schmidt-B/"ocking, A broad-application microchannel-plate detector system for advanced particle or photon detection tasks: large area imaging, precise multi-hit timing information and high detection rate. Nucl. Instrum. Methods Phys. Res., Sect. A 477, 244–249 (2002)

    Google Scholar 

  7. A.E. Cameron, D.F. Eggers, An ion “Velocitron". Rev. Sci. Instrum. 19, 605–607 (1948)

    Article  ADS  Google Scholar 

  8. W.C. Wiley, I.H. McLaren, Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum. 26(12), 1150–1157 (1955)

    Article  ADS  Google Scholar 

  9. J.H. Posthumus, The dynamics of small molecules in intense laser fields. Rep. Prog. Phys. 67(5), 623–665 (2004)

    Article  ADS  Google Scholar 

  10. N. Marable, G. Sanzone, High-resolution time-of-flight mass spectrometry: theory of the impulsed-focused time-of-flight mass spectrometer. Int. J. Mass Spectrom. Ion Phys. 13, 185–194 (1974)

    Article  Google Scholar 

  11. B.A. Mamyrin, D.V. Shmikk, The linear mass reflectron. Sov. Phys. JETP 49(5), 762–764 (1979)

    ADS  Google Scholar 

  12. P. Hansch, L.D.V. Woerkom, High-precision intensity-selective observation of multiphoton ionization: a new method of photoelectron spectroscopy. Opt. Lett. 21(16), 1286–1288 (1996)

    Article  ADS  Google Scholar 

  13. L. Robson, K.W. Ledingham, P. McKenna, T. McCanny, S. Shimizu, J.M. Yang, C. Wahlstrm, R. Lopez-Martens, K. Varju, P. Johnsson, J. Mauritsson, Volumetric intensity dependence on the formation of molecular and atomic ions within a high intensity laser focus. J. Am. Soc. Mass Spectrom. 16, 82–89 (2005)

    Article  Google Scholar 

  14. M.A. Walker, P. Hansch, L.D. Van Woerkom, Intensity-resolved multiphoton ionization: circumventing spatial averaging. Phys. Rev. A 57, R701–R704 (1998)

    Article  ADS  Google Scholar 

  15. W.A. Bryan, S.L. Stebbings, J. McKenna, E.M.L. English, M. Suresh, J. Wood, B. Srigengan, I.C.E. Turcu, J.M. Smith, E.J. Divall, C.J. Hooker, A.J. Langley, J.L. Collier, I.D. Williams, W.R. Newell, Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization. Nat. Phys. 2(6), 379–383 (2006)

    Article  Google Scholar 

  16. J. McKenna, M. Suresh, B. Srigengan, I.D. Williams, W.A. Bryan, E.M.L. English, S.L. Stebbings, W.R. Newell, I.C.E. Turcu, J.M. Smith, E.J. Divall, C.J. Hooker, A.J. Langley, J.L. Collier, Rescattering-enhanced dissociation of a molecular ion. Phys. Rev. A 74, 043409 (2006)

    Google Scholar 

  17. L.J. Frasinski, K. Codling, P.A. Hatherly, Covariance mapping: a correlation method applied to multiphoton multiple ionization. Science 246, 1029–1031 (1989)

    Article  ADS  Google Scholar 

  18. K. Codling, L.J. Frasinski, Dissociative ionization of small molecules in intense laser fields. J. Phys. B: At. Mol. Opt. Phys. 26, 783–809 (1993)

    Article  ADS  Google Scholar 

  19. L.J. Frasinski, P.A. Hatherly, K. Codling, M. Larsson, A. Persson, C.G. Wahlstrom, Multielectron dissociative ionization of co\(_2\) in intense laser fields. J. Phys. B: At. Mol. Opt. Phys. 27, L109–L114 (1994)

    Article  ADS  Google Scholar 

  20. L.J. Frasinski, M. Stankiewicz, P.A. Hatherly, G.M. Cross, K. Codling, A.J. Langley, W. Shaikh, Molecular h\(_2\) in intense laser fields probed by electron-electron, electron-ion, and ion-ion covariance techniques. Phys. Rev. A 46, R6789–R6792 (1992)

    Article  ADS  Google Scholar 

  21. J.L. Hansen, J.H. Nielsen, C.B. Madsen, A.T. Lindhardt, M.P. Johansson, T. Skrydstrup, L.B. Madsen, H. Stapelfeldt, Control and femtosecond time-resolved imaging of torsion in a chiral molecule, J. Chem. Phys. 136, 204310–204310-10 (2012)

    Google Scholar 

  22. A.T.J.B. Eppink, D.H. Parker, Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68(9), 3477 (1997)

    Article  ADS  Google Scholar 

  23. M.J.J. Vrakking, An iterative procedure for the inversion of two-dimensional ion/photoelectron imaging experiments. Rev. Sci. Instrum. 72, 4084–4089 (2001)

    Article  ADS  Google Scholar 

  24. V. Dribinski, A. Ossadtchi, V.A. Mandelshtam, H. Reisler, Reconstruction of abel-transformable images: the gaussian basis-set expansion abel transform method. Rev. Sci. Instrum. 73, 2634–2642 (2002)

    Article  ADS  Google Scholar 

  25. G.A. Garcia, L. Nahon, I. Powis, Two-dimensional charged particle image inversion using a polar basis function expansion. Rev. Sci. Instrum. 75, 4989–4996 (2004)

    Article  ADS  Google Scholar 

  26. M. Wollenhaupt, M. Krug, J.Köhler, T. Bayer, C. Sarpe-Tudoran, T. Baumert, Three-dimensional tomographic reconstruction ofultrashort free-electron wave packets. Appl. Phys. B 95, 647–651 (2009)

    Google Scholar 

  27. J. Maurer, D. Dimitrovski, L. Christensen, L.B. Madsen, H. Stapelfeldt, Molecular-frame 3D photoelectron momentum distributions by tomographic reconstruction. Phys. Rev. Lett. 109, 123001 (2012)

    Article  ADS  Google Scholar 

  28. S. Kauczok, N.G/"adecke, A.I. Chichinin, M. Veckenstedt, C. Maul, K.-H. Gericke, Three-dimensional velocity map imaging: setup and resolution improvement compared to three-dimensional ion imaging, Rev. Sci. Instrum. 80, 083301–083301-10 (2009)

    Google Scholar 

  29. D. Strasser, X. Urbain, H.B. Pedersen, N. Altstein, O. Heber, R. Wester, K.G. Bhushan, D. Zajfman, An innovative approach to multiparticle three-dimensional imaging. Rev. Sci. Instrum. 71, 3092–3098 (2000)

    Google Scholar 

  30. L. Dinu, A.T.J.B. Eppink, F. Rosca-Pruna, H.L. Offerhaus, W.J. van der Zande, M.J.J. Vrakking, Application of a time-resolved event counting technique in velocity map imaging. Rev. Sci. Instrum. 73, 4206–4213 (2002)

    Article  ADS  Google Scholar 

  31. J. Eland, Photoelectron-photoion coincidence spectroscopy: I. basic principles and theory. Int. J. Mass Spectrom. Ion Phys. 8, 143–151 (1972)

    Article  Google Scholar 

  32. C. Danby, J. Eland, Photoelectron-photoion coincidence spectroscopy: II. design and performance of a practical instrument. Int. J. Mass Spectrom. Ion Phys. 8, 153–161 (1972)

    Article  Google Scholar 

  33. R.E. Continetti, Coincidence spectroscopy. Annu. Rev. Phys. Chem. 52(1), 165–192 (2001)

    Article  ADS  Google Scholar 

  34. J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L.P.H. Schmidt, H. Schmidt-Böcking, Recoil-ion and electron momentum spectroscopy: reaction-microscopes. Rep. Prog. Phys. 66, 1463–1545 (2003)

    Google Scholar 

  35. J. Ullrich, R. Moshammer, M. Unverzagt, W. Schmidt, P. Jardin, R. Olson, R. Dorner, V. Mergel, H. Schmidt-Bocking, Ionization collision dynamics in 3.6 MeV/u ni24+ on he encounters. Nucl. Instrum. Methods Phys. Res., Sect. B 98, 375–379 (1995)

    Article  ADS  Google Scholar 

  36. R. Moshammer, M. Unverzagt, W. Schmitt, J. Ullrich, H. Schmidt-Bocking, A 4\(\pi \) recoil-ion electron momentum analyzer: a high-resolution microscope for the investigation of the dynamics of atomic, molecular and nuclear reactions. Nucl. Instrum. Methods Phys. Res., Sect. B 108, 425–445 (1996)

    Article  ADS  Google Scholar 

  37. G. Scoles, D. Bassi, U. Buck, D.C. Laine (eds.), Atomic and Molecular Beam Methods, vol. 1. (Oxford University Press, Oxford, 1988)

    Google Scholar 

  38. R.D. Zucker, O. Biblarz, Fundamentals of gas dynamics, 2nd edn. (Wiley, 2002)

    Google Scholar 

  39. D.M. Lubman, C.T. Rettner, R.N. Zare, How isolated are molecules in a molecular beam, J. Phys. Chem. (United States) 86, 7 (1982)

    Google Scholar 

  40. O.F. Hagena, Cluster formation in expanding supersonic jets: Effect of pressure, temperature, nozzle size, and test gas. J. Chem. Phys. 56, 1793 (1972)

    Article  ADS  Google Scholar 

  41. M. Hillenkamp, S. Keinan, U. Even, Condensation limited cooling in supersonic expansions. J. Chem. Phys. 118, 8699–8705 (2003)

    Article  ADS  Google Scholar 

  42. J. Wörmer, V. Guzielski, J. Stapelfeldt, T. Müller, Fluorescence excitation spectroscopy of xenon clusters in the VUV. Chem. Phys. Lett. 159, 321–326 (1989)

    Article  ADS  Google Scholar 

  43. R. Campargue, Progress in overexpanded supersonic jets and skimmed molecular beams in free-jet zones of silence. J. Phys. Chem. 88, 4466–4474 (1984)

    Article  Google Scholar 

  44. V. Kumarappan, C.Z. Bisgaard, S.S. Viftrup, L. Holmegaard, H. Stapelfeldt, Role of rotational temperature in adiabatic molecular alignment. J. Chem. Phys. 125(19), 194309 (2006)

    Article  ADS  Google Scholar 

  45. A. Miffre, M. Jacquey, M. Buchner, G. Trenec, J. Vigue, Parallel temperatures in supersonic beams: ultra cooling of light atoms seeded in a heavier carrier gas. J. Phys. Chem. 122, 094308 (2004)

    Article  Google Scholar 

  46. A.E. Siegman, Lasers, new edn. (University Science Books, London, 1990)

    Google Scholar 

  47. M.A. de Araújo, R. Silva, E. de Lima, D.P. Pereira, P.C. de Oliveira, Measurement of gaussian laser beam radius using the knife-edge technique: improvement on data analysis. Appl. Opt. 48, 393–396 (2009)

    Article  ADS  Google Scholar 

  48. S.M. Hankin, D.M. Villeneuve, P.B. Corkum, D.M. Rayner, Intense-field laser ionization rates in atoms and molecules. Phys. Rev. A 64, 013405 (2001)

    Article  ADS  Google Scholar 

  49. E.A. Gibson, A. Paul, N. Wagner, R. Tobey, S. Backus, I.P. Christov, M.M. Murnane, H.C. Kapteyn, High-order harmonic generation up to 250 ev from highly ionized argon. Phys. Rev. Lett. 92(3), 033001 (2004)

    Article  ADS  Google Scholar 

  50. E. Hecht, Optics, 4th edn. (Addison-Wesley, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Oppermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oppermann, M. (2014). Experimental Methods and Setup. In: Resolving Strong Field Dynamics in Cation States of CO_2 via Optimised Molecular Alignment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-05338-7_4

Download citation

Publish with us

Policies and ethics