Spatial Sampling for Agricultural Data

  • Federica Piersimoni
  • Paolo Postiglione
  • Roberto Benedetti
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


The importance of sampling spatial units is recently acknowledged in various practical studies. In most cases, spatial units are defined across a geographical domain partitioned into a number of predetermined regularly or irregularly shaped locations. In standard sampling theory, spatial units have been traditionally represented as a mosaic of areas in which individual primary units are essentially viewed as identical members of the same population. The dependence between nearest units is an inherent feature of spatial data that should be exploited at least in the sample design. In this paper, we present a review of the main topic concerning sampling spatial units. In particular, we focus our attention to spatially distributed agricultural data, which are extremely important as a support for both policy makers and market stakeholders. Our narrative aims at raising some research questions that can be explored in the near future.


Auxiliary information Calibration methods Small area estimation Spatial surveys Spatially balanced samples 


  1. AA. VV.: Special issue on small area estimation. J. Indian Soc. Agric. Stat. 66, 1–239 (2012)Google Scholar
  2. Arbia, G.: The use of GIS in spatial statistical surveys. Int. Stat. Rev. 61, 339–359 (1993)CrossRefGoogle Scholar
  3. Arroway, P., Abreu, D.A., Lamas, A.C., Lopiano, K.K., Young, L.Y.: An alternate approach to assessing misclassification in JAS. In: Proceedings of the Section on Survey Research Methods JSM 2010, American Statistical Association, Alexandria (2010)Google Scholar
  4. Baillargeon, S., Rivest, L.-P.: The construction of stratified designs in R with the package stratification. Surv. Methodol. 37, 53–65 (2011)Google Scholar
  5. Battese, G.E., Harter, R.M., Fuller, W.A.: An error component model for prediction of county crop areas using survey and satellite data. J. Am. Stat. Assoc. 83, 28–36 (1988)CrossRefGoogle Scholar
  6. Bee, M., Benedetti, R., Espa, G., Piersimoni, F.: On the use of auxiliary variables in agricultural surveys design. In: Benedetti, R., Bee, M., Espa, G., Piersimoni, F. (eds.) Agricultural Survey Methods, pp. 107–132. Wiley, Chichester (2010)CrossRefGoogle Scholar
  7. Benedetti, R., Filipponi, D.: Estimation of land cover parameters when some covariates are missing. In: Benedetti, R., Bee, M., Espa, G., Piersimoni, F. (eds.) Agricultural Survey Methods, pp. 213–230. Wiley, Chichester (2010)CrossRefGoogle Scholar
  8. Benedetti, R., Palma, D.: Optimal sampling designs for dependent spatial units. Environmetrics 6, 101–114 (1995)CrossRefGoogle Scholar
  9. Benedetti, R., Espa, G., Lafratta, G.: A tree-based approach to forming strata in multipurpose business surveys. Surv. Methodol. 34, 195–203 (2008)Google Scholar
  10. Benedetti, R., Bee, M., Espa, G., Piersimoni, F.: Agricultural Survey Methods. Wiley, Chichester (2010)CrossRefGoogle Scholar
  11. Benedetti, R., Piersimoni, F., Postiglione, P.: Statistics in agricultural production. In: Balakrishnan, N. (ed.) Methods and Applications of Statistics in the Social and Behavioral Sciences, pp. 357–373. Wiley, Hoboken (2012)Google Scholar
  12. Benedetti, R., Pratesi, M., Salvati, N.: Local stationarity in small area estimation models. Stat. Methods Appl. 22, 81–95 (2013)CrossRefMathSciNetGoogle Scholar
  13. Benedetti, R., Piersimoni, F., Postiglione, P.: Sampling Spatial Units for Agricultural Surveys. Springer (2014, forthcoming)Google Scholar
  14. Breidt, F.J., Chauvet, G.: Penalized balanced sampling. Biometrika 99, 945–958 (2012)CrossRefMATHMathSciNetGoogle Scholar
  15. Carfagna, E., Gallego, F.J.: Using remote sensing for agricultural statistics. Int. Stat. Rev. 73, 389–404 (2005)CrossRefMATHGoogle Scholar
  16. Chauvet, G., Tillé, Y.: A fast algorithm of balanced sampling. Comput. Stat. 21, 53–62 (2006)CrossRefMATHGoogle Scholar
  17. Cotter, J., Davies, C., Nealon, J., Roberts, R.: Area frame design for agricultural surveys. In: Benedetti, R., Bee, M., Espa, G., Piersimoni, F. (eds.) Agricultural Survey Methods, pp. 169–192. Wiley, Chichester (2010)CrossRefGoogle Scholar
  18. Datta, G.S., Fay, R.E., Ghosh, M.: Hierarchical and empirical Bayes multivariate analysis in small area estimation. In: Proceedings of Bureau of the Census 1991 Annual Research Conference, pp. 63–79. US Bureau of the Census, Washington (1991)Google Scholar
  19. Deville, J.C., Särndal, C.-E.: Calibration estimators in survey sampling. J. Am. Stat. Assoc. 87, 376–382 (1992)CrossRefMATHGoogle Scholar
  20. Deville, J.C., Tillé, Y.: Unequal probability sampling without replacement through a splitting method. Biometrika 85, 89–101 (1998)CrossRefMATHMathSciNetGoogle Scholar
  21. Deville, J.C., Tillé, Y.: Efficient balanced sampling: The cube method. Biometrika 91, 893–912 (2004)CrossRefMATHMathSciNetGoogle Scholar
  22. EUROSTAT: Manual of concepts on land cover and land use information systems. In: Theme 5: Agriculture and Fisheries: Methods and Nomenclatures. Office for Official Publications of the European Communities, Luxembourg (2000)Google Scholar
  23. Everaers, P.: The present state of agricultural statistics in developed countries: Situation and challenges. In: Benedetti, R., Bee, M., Espa, G., Piersimoni, F. (eds.) Agricultural Survey Methods, pp. 1–24. Wiley, Chichester (2010)CrossRefGoogle Scholar
  24. FAO: Multiple frame agricultural surveys. v. 1: Current surveys based on area and list sampling methods. Statistical Development Series n. 7. (1996)
  25. Fay, R.E., Herriot, R.A.: Estimates of income for small places: An application of James–Stein procedures to census data. J. Am. Stat. Assoc. 74, 269–277 (1979)CrossRefMathSciNetGoogle Scholar
  26. Gallego, J., Delincè, J.: The European land use and cover area-frame statistical survey. In: Benedetti, R., Bee, M., Espa, G., Piersimoni, F. (eds.) Agricultural Survey Methods, pp. 151–168. Wiley, Chichester (2010)Google Scholar
  27. Ghosh, M., Rao, J.N.K.: Small area estimation: an appraisal. Stat. Sci. 9, 55–93 (1994)CrossRefMATHMathSciNetGoogle Scholar
  28. Grafström, A.: Spatially correlated Poisson sampling. J. Stat. Plan. Inference 142, 139–147 (2012)CrossRefMATHGoogle Scholar
  29. Grafström, A., Tillé, Y.: Doubly balanced spatial sampling with spreading and restitution of auxiliary totals. Environmetrics 24, 120–131 (2013)CrossRefMathSciNetGoogle Scholar
  30. Grafström, A., Lundström, N.L.P., Schelin, L.: Spatially balanced sampling through the Pivotal method. Biometrics 68, 514–520 (2012)CrossRefMATHMathSciNetGoogle Scholar
  31. Horgan, J.M.: Stratification of skewed populations: a review. Int. Stat. Rev. 74, 67–76 (2006)CrossRefMATHGoogle Scholar
  32. Hung, H.-M., Fuller, W.A.: Regression estimation of crop acreages with transformed landsat data as auxiliary variables. J. Bus. Econ. Stat. 5, 475–482 (1987)Google Scholar
  33. Jacques, P., Gallego, F.J.: The LUCAS project. The new methodology in the 2005/2006 surveys. Agri-environment Workshop, Belgirate. ( (2005)
  34. Khan, M.G.M., Nand, N., Ahma, N.: Determining the optimum strata boundary points using dynamic programming. Surv. Methodol. 34, 205–214 (2008)Google Scholar
  35. Kozak, M.: Optimal stratification using random search method in agricultural surveys. Stat. Transit. 5, 797–806 (2004)Google Scholar
  36. Lohr, S.L.: Multiple-frame surveys. In: Pfeffermann, D., Rao, C.R. (eds.) Handbook of Statistics, Sample Surveys: Design, Methods and Applications, vol. 29A, pp. 71–88. Elsevier, The Netherlands (2009)CrossRefGoogle Scholar
  37. Mecatti, F.: A single frame multiplicity estimator for multiple frame surveys. Surv. Methodol. 33, 151–157 (2007)Google Scholar
  38. Montanari, G.E., Ranalli, G.: Nonparametric model calibration estimation in survey sampling. J. Am. Stat. Assoc. 100, 1429–1442 (2005)CrossRefMATHMathSciNetGoogle Scholar
  39. Nusser, S.M., House, C.C.: Sampling, data collection, and estimation in agricultural Surveys. In: Pfeffermann, D., Rao, C.R. (eds.) Sample Surveys Design, Methods and Applications. Handbook of Statistics, vol. 29A, pp. 471–486. Elsevier, Amsterdam (2009)CrossRefGoogle Scholar
  40. Pfeffermann, D.: New important developments in small area estimation. Stat. Sci. 28, 40–68 (2013)CrossRefMathSciNetGoogle Scholar
  41. Postiglione, P., Benedetti, R., Piersimoni, F.: Spatial prediction of agricultural crop yield. In: Benedetti, R., Bee, M., Espa, G., Piersimoni, F. (eds.) Agricultural Survey Methods, pp. 369–387. Wiley, Chichester (2010)CrossRefGoogle Scholar
  42. Pratesi, M., Salvati, N.: Small area estimation: the EBLUP estimator based on spatially correlated random area effects. Stat. Methods Appl. 17, 113–141 (2008)CrossRefMATHMathSciNetGoogle Scholar
  43. Rao, J.N.K.: Small Area Estimation. Wiley, Hoboken (2003)CrossRefMATHGoogle Scholar
  44. Rao, J.N.K., Yu, M.: Small area estimation by combining time series and cross- sectional data. Can. J. Stat. 22, 511–528 (1994)CrossRefMATHMathSciNetGoogle Scholar
  45. Rogerson, P.A., Delmelle, E.: Optimal sampling design for variables with varying spatial importance. Geogr. Anal. 36, 177–194 (2004)CrossRefGoogle Scholar
  46. Rosén, B.: On sampling with probability proportional to size. J. Stat. Plan. Inference 62, 159–191 (1997)CrossRefMATHGoogle Scholar
  47. Singh, A.: Contributions to Sampling Statistics. Springer, Heidelberg (2014)Google Scholar
  48. Stevens Jr., D.L., Olsen, A.R.: Spatially balanced sampling of natural resources. J. Am. Stat. Assoc. 99, 262–278 (2004)CrossRefMATHMathSciNetGoogle Scholar
  49. Tillé, Y.: Sampling Algorithms. Springer Series in Statistics. Springer, New York (2006)Google Scholar
  50. Tillé, Y.: Ten years of balanced sampling with the cube method: an appraisal. Surv. Methodol. 2, 215–226 (2011)Google Scholar
  51. Tillé, Y., Favre, A.-C.: Optimal allocation in balanced sampling. Stat. Probab. Lett. 1, 31–37 (2005)CrossRefGoogle Scholar
  52. Vogel, F.A.: The evolution and development of agricultural statistics at the United States Department of Agriculture. J. Official Stat. 11, 161–180 (1995)Google Scholar
  53. Wang, J.-F., Stein, A., Gao, B.-B., Ge, Y.: A review of spatial sampling. Spat. Stat. 2, 1–14 (2012)CrossRefGoogle Scholar
  54. Wu, C.: Optimal calibration estimators in survey sampling. Biometrika 90, 937–951 (2003)CrossRefMathSciNetGoogle Scholar
  55. Wu, C., Sitter, R.R.: A model calibration approach to using complete auxiliary information from survey data. J. Am. Stat. Assoc. 96, 185–193 (2001)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Federica Piersimoni
    • 1
  • Paolo Postiglione
    • 2
  • Roberto Benedetti
    • 2
  1. 1.ISTAT, Agricultural Statistics ServiceRomeItaly
  2. 2.Department of Economic StudiesUniversity “G. d’Annunzio” of Chieti-PescaraChietiItaly

Personalised recommendations