Skip to main content

Imputation of Quantitative Genetic Interactions in Epistatic MAPs by Interaction Propagation Matrix Completion

  • Conference paper
  • 2788 Accesses

Part of the Lecture Notes in Computer Science book series (LNBI,volume 8394)

Abstract

A popular large-scale gene interaction discovery platform is the Epistatic Miniarray Profile (E-MAP). E-MAPs benefit from quantitative output, which makes it possible to detect subtle interactions. However, due to the limits of biotechnology, E-MAP studies fail to measure genetic interactions for up to 40% of gene pairs in an assay. Missing measurements can be recovered by computational techniques for data imputation, thus completing the interaction profiles and enabling downstream analysis algorithms that could otherwise be sensitive to largely incomplete data sets. We introduce a new interaction data imputation method called interaction propagation matrix completion (IP-MC). The core part of IP-MC is a low-rank (latent) probabilistic matrix completion approach that considers additional knowledge presented through a gene network. IP-MC assumes that interactions are transitive, such that latent gene interaction profiles depend on the profiles of their direct neighbors in a given gene network. As the IP-MC inference algorithm progresses, the latent interaction profiles propagate through the branches of the network. In a study with three different E-MAP data assays and the considered protein-protein interaction and Gene Ontology similarity networks, IP-MC significantly surpassed existing alternative techniques. Inclusion of information from gene networks also allows IP-MC to predict interactions for genes that were not included in original E-MAP assays, a task that could not be considered by current imputation approaches.

Keywords

  • genetic interaction
  • missing value imputation
  • epistatic miniarray profile
  • matrix completion
  • interaction propagation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-05269-4_35
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-05269-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schuldiner, M., et al.: Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123(3), 507–519 (2005)

    CrossRef  Google Scholar 

  2. Collins, S.R., et al.: A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biology 7, R63 (2006)

    Google Scholar 

  3. Roguev, A., et al.: Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322(5900), 405–410 (2008)

    CrossRef  Google Scholar 

  4. Wilmes, G.M., et al.: A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Molecular Cell 32(5), 735–746 (2008)

    CrossRef  Google Scholar 

  5. Tong, A.H.Y., et al.: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550), 2364–2368 (2001)

    CrossRef  Google Scholar 

  6. Tong, A.H.Y., et al.: Global mapping of the yeast genetic interaction network. Science 303(5659), 808–813 (2004)

    CrossRef  Google Scholar 

  7. Collins, S.R., et al.: Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137), 806–810 (2007)

    CrossRef  Google Scholar 

  8. de Brevern, A.G., et al.: Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering. BMC Bioinformatics 5(1), 114 (2004)

    CrossRef  Google Scholar 

  9. Liew, A.W.C., et al.: Missing value imputation for gene expression data: computational techniques to recover missing data from available information. Briefings in Bioinformatics 12(5), 498–513 (2011)

    CrossRef  Google Scholar 

  10. Pu, S., et al.: Local coherence in genetic interaction patterns reveals prevalent functional versatility. Bioinformatics 24(20), 2376–2383 (2008)

    CrossRef  Google Scholar 

  11. Bandyopadhyay, S., et al.: Functional maps of protein complexes from quantitative genetic interaction data. PLoS Computational Biology 4(4), e1000065 (2008)

    Google Scholar 

  12. Ulitsky, I., et al.: From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions. Molecular Systems Biology 4(1) (2008)

    Google Scholar 

  13. Järvinen, A.P., et al.: Predicting quantitative genetic interactions by means of sequential matrix approximation. PLoS One 3(9), e3284 (2008)

    Google Scholar 

  14. Troyanskaya, O., et al.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001)

    CrossRef  Google Scholar 

  15. Brock, G.N., et al.: Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes. BMC Bioinformatics 9(1), 12 (2008)

    CrossRef  Google Scholar 

  16. Ryan, C., et al.: Missing value imputation for epistatic MAPs. BMC Bioinformatics 11(1), 197 (2010)

    CrossRef  Google Scholar 

  17. Zheng, J., et al.: Epistatic relationships reveal the functional organization of yeast transcription factors. Molecular Systems Biology 6(1) (2010)

    Google Scholar 

  18. Bø, T.H., et al.: LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Research 32(3), e34 (2004)

    Google Scholar 

  19. Kim, H., et al.: Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics 21(2), 187–198 (2005)

    CrossRef  Google Scholar 

  20. Cai, J.F., et al.: A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization 20(4), 1956–1982 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Oba, S., et al.: A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19(16), 2088–2096 (2003)

    CrossRef  Google Scholar 

  22. Jörnsten, R., et al.: DNA microarray data imputation and significance analysis of differential expression. Bioinformatics 21(22), 4155–4161 (2005)

    CrossRef  Google Scholar 

  23. Ulitsky, I., et al.: Towards accurate imputation of quantitative genetic interactions. Genome Biology 10(12), R140 (2009)

    Google Scholar 

  24. Ryan, C., et al.: Imputing and predicting quantitative genetic interactions in epistatic MAPs. In: Network Biology, pp. 353–361 (2011)

    Google Scholar 

  25. Pan, X.Y., Tian, Y., Huang, Y., Shen, H.B.: Towards better accuracy for missing value estimation of epistatic miniarray profiling data by a novel ensemble approach. Genomics 97(5), 257–264 (2011)

    CrossRef  Google Scholar 

  26. Wong, S.L., et al.: Combining biological networks to predict genetic interactions. PNAS 101(44), 15682–15687 (2004)

    CrossRef  Google Scholar 

  27. Kelley, R., Ideker, T.: Systematic interpretation of genetic interactions using protein networks. Nature Biotechnology 23(5), 561–566 (2005)

    CrossRef  Google Scholar 

  28. Qi, Y., et al.: Finding friends and enemies in an enemies-only network: a graph diffusion kernel for predicting novel genetic interactions and co-complex membership from yeast genetic interactions. Genome Research 18(12), 1991–2004 (2008)

    CrossRef  Google Scholar 

  29. Pandey, G., et al.: An integrative multi-network and multi-classifier approach to predict genetic interactions. PLoS Computational Biology 6(9), e1000928 (2010)

    Google Scholar 

  30. Ashburner, M., et al.: Gene Ontology: tool for the unification of biology. Nature Genetics 25(1), 25–29 (2000)

    CrossRef  Google Scholar 

  31. Stark, C., et al.: BioGRID: a general repository for interaction datasets. Nucleic Acids Research 34(suppl. 1), D535–D539 (2006)

    Google Scholar 

  32. Costanzo, M., et al.: The genetic landscape of a cell. Science 327(5964), 425–431 (2010)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Žitnik, M., Zupan, B. (2014). Imputation of Quantitative Genetic Interactions in Epistatic MAPs by Interaction Propagation Matrix Completion. In: Sharan, R. (eds) Research in Computational Molecular Biology. RECOMB 2014. Lecture Notes in Computer Science(), vol 8394. Springer, Cham. https://doi.org/10.1007/978-3-319-05269-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05269-4_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05268-7

  • Online ISBN: 978-3-319-05269-4

  • eBook Packages: Computer ScienceComputer Science (R0)