HIT’nDRIVE: Multi-driver Gene Prioritization Based on Hitting Time

  • Raunak Shrestha
  • Ermin Hodzic
  • Jake Yeung
  • Kendric Wang
  • Thomas Sauerwald
  • Phuong Dao
  • Shawn Anderson
  • Himisha Beltran
  • Mark A. Rubin
  • Colin C. Collins
  • Gholamreza Haffari
  • S. Cenk Sahinalp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8394)


A key challenge in cancer genomics is the identification and prioritization of genomic aberrations that potentially act as drivers of cancer. In this paper we introduce HIT’nDRIVE, a combinatorial method to identify aberrant genes that can collectively influence possibly distant “outlier” genes based on what we call the “random-walk facility location” (RWFL) problem on an interaction network. RWFL differs from the standard facility location problem by its use of “multi-hitting time”, the expected minimum number of hops in a random walk originating from any aberrant gene to reach an outlier. HIT’nDRIVE thus aims to find the smallest set of aberrant genes from which one can reach outliers within a desired multi-hitting time. For that it estimates multi-hitting time based on the independent hitting times from the drivers to any given outlier and reduces the RWFL to a weighted multi-set cover problem, which it solves as an integer linear program (ILP). We apply HIT’nDRIVE to identify aberrant genes that potentially act as drivers in a cancer data set and make phenotype predictions using only the potential drivers - more accurately than alternative approaches.


Potential Driver Driver Gene Genomic Aberration Integer Linear Programming Formulation Aberrant Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stratton, M.R., Campbell, P.J., Futreal, P.A.: The cancer genome. Nature 458(7239), 719–724 (2009)CrossRefGoogle Scholar
  2. 2.
    Greenman, C., Stephens, P., Smith, R., Dalgliesh, G.L., Hunter, C., et al.: Patterns of somatic mutation in human cancer genomes. Nature 446(7132), 153–158 (2007)CrossRefGoogle Scholar
  3. 3.
    Greenman, C., Wooster, R., Futreal, P.A., Stratton, M.R., Easton, D.F.: Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics 173(4), 2187–2198 (2006)CrossRefGoogle Scholar
  4. 4.
    Youn, A., Simon, R.: Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics 27(2), 175–181 (2011)CrossRefGoogle Scholar
  5. 5.
    Parsons, D.W., Jones, S., Zhang, X., Lin, J.C.H., Leary, R.J., Angenendt, P., et al.: An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897), 1807–1812 (2008)CrossRefGoogle Scholar
  6. 6.
    Cancer Genome Atlas Network: Integrated genomic analyses of ovarian carcinoma. Nature 474(7353), 609–615 (2011)Google Scholar
  7. 7.
    Cancer Genome Atlas Network: Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407), 330–337 (2012)Google Scholar
  8. 8.
    Greaves, M., Maley, C.C.: Clonal evolution in cancer. Nature 481(7381), 306–313 (2012)CrossRefGoogle Scholar
  9. 9.
    Ding, L., Ley, T.J., Larson, D.E., Miller, C.A., Koboldt, D.C., et al.: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382), 506–510 (2012)CrossRefGoogle Scholar
  10. 10.
    Akavia, U.D., Litvin, O., Kim, J., Sanchez-Garcia, F., Kotliar, D., et al.: An integrated approach to uncover drivers of cancer. Cell 143(6), 1005–1017 (2010)CrossRefGoogle Scholar
  11. 11.
    Masica, D.L., Karchin, R.: Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival. Cancer Research 71(13), 4550–4561 (2011)CrossRefGoogle Scholar
  12. 12.
    Leiserson, M.D.M., Blokh, D., Sharan, R., Raphael, B.J.: Simultaneous identification of multiple driver pathways in cancer. PLoS Computational Biology 9(5), e1003054 (2013)Google Scholar
  13. 13.
    Ciriello, G., Cerami, E., Sander, C., Schultz, N.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Research 22(2), 398–406 (2012)CrossRefGoogle Scholar
  14. 14.
    Kim, Y.A., Wuchty, S., Przytycka, T.M.: Identifying causal genes and dysregulated pathways in complex diseases. PLoS Computational Biology 7(3), e1001095 (2011)Google Scholar
  15. 15.
    Vaske, C.J., Benz, S.C., Sanborn, J.Z., Earl, D., Szeto, C., et al.: Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26(12), i237–i245 (2010)Google Scholar
  16. 16.
    Vandin, F., Upfal, E., Raphael, B.J.: Algorithms for detecting significantly mutated pathways in cancer. Journal of Computational Biology: a Journal of Computational Molecular Cell Biology 18(3), 507–522 (2011)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Paull, E.O., Carlin, D.E., Niepel, M., Sorger, P.K., Haussler, D., et al.: Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE). Bioinformatics, 1–8 (2013)Google Scholar
  18. 18.
    Bashashati, A., Haffari, G., Ding, J., Ha, G., Lui, K., et al.: DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biology 13(12), R124 (2012)Google Scholar
  19. 19.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of the American Society for Information Science and Technology 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  20. 20.
    Hopcroft, J., Sheldon, D.: Manipulation-resistant reputations using hitting time. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 68–81. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Tetali, P.: Design of on-line algorithms using hitting times. SIAM J. Comput. 28(4), 1232–1246 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Dao, P., Wang, K., Collins, C., Ester, M., Lapuk, A., Sahinalp, S.C.: Optimally discriminative subnetwork markers predict response to chemotherapy. Bioinformatics 27(13) (July 2011)Google Scholar
  23. 23.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society (2008)Google Scholar
  24. 24.
    Hormozdiari, F., Alkan, C., Eichler, E.E., Sahinalp, S.C.: Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Research 19(7), 1270–1278 (2009)CrossRefGoogle Scholar
  25. 25.
    Mihail, M., Papadimitriou, C.H., Saberi, A.: On certain connectivity properties of the internet topology. J. Comput. Syst. Sci. 72(2), 239–251 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Futreal, P.A., Coin, L., Marshall, M., Down, T., Hubbard, T., et al.: A census of human cancer genes. Nature reviews. Cancer 4(3), 177–183 (2004)Google Scholar
  27. 27.
    Forbes, S.A., Bindal, N., Bamford, S., Cole, C., Kok, C.Y., et al.: COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Research 39(database issue), D945–D950 (2011)Google Scholar
  28. 28.
    Prasad, T.S.K., Kandasamy, K., Pandey, A.: Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. Methods in Molecular Biology 577, 67–79 (2009)CrossRefGoogle Scholar
  29. 29.
    Cancer Genome Atlas Network: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216), 1061–1068 (2008)Google Scholar
  30. 30.
    Verhaak, R.G.W., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98–110 (2010)CrossRefGoogle Scholar
  31. 31.
    McKerracher, L., David, S., Jackson, D.L., Kottis, V., Dunn, R.J., et al.: Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13(4), 805–811 (1994)CrossRefGoogle Scholar
  32. 32.
    Piccirillo, S.G.M., Reynolds, B.A., Zanetti, N., Lamorte, G., Binda, E., et al.: Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444(7120), 761–765 (2006)CrossRefGoogle Scholar
  33. 33.
    Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Systems, 1695 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Raunak Shrestha
    • 1
    • 2
  • Ermin Hodzic
    • 3
  • Jake Yeung
    • 2
    • 4
  • Kendric Wang
    • 2
  • Thomas Sauerwald
    • 5
  • Phuong Dao
    • 6
  • Shawn Anderson
    • 2
  • Himisha Beltran
    • 7
  • Mark A. Rubin
    • 7
  • Colin C. Collins
    • 2
    • 8
  • Gholamreza Haffari
    • 9
  • S. Cenk Sahinalp
    • 3
    • 10
  1. 1.CIHR Bioinformatics Training ProgramUniversity of British ColumbiaVancouverCanada
  2. 2.Laboratory for Advanced Genome AnalysisVancouver Prostate CentreVancouverCanada
  3. 3.School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  4. 4.Genome Science and Technology ProgramUniversity of British ColumbiaVancouverCanada
  5. 5.Computer LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
  6. 6.NLM, NIHNational Center for Biotechnology InformationBethesdaUSA
  7. 7.Weill Cornell Cancer CenterNew YorkUSA
  8. 8.Department of Urologic SciencesUniversity of British ColumbiaVancouverCanada
  9. 9.Faculty of Information TechnologyMonash UniversityMelbourneAustralia
  10. 10.School of Informatics and ComputingIndiana UniversityBloomingtonUSA

Personalised recommendations