PASTA: Ultra-Large Multiple Sequence Alignment

  • Siavash Mirarab
  • Nam Nguyen
  • Tandy Warnow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8394)

Abstract

In this paper, we introduce a new and highly scalable algorithm, PASTA, for large-scale multiple sequence alignment estimation. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy of the leading alignment methods on large datasets, and is able to analyze much larger datasets than the current methods. We also show that trees estimated on PASTA alignments are highly accurate – slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is very fast, highly parallelizable, and requires relatively little memory.

Keywords

Multiple sequence alignment Ultra-large SATé 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sievers, F., Dineen, D., Wilm, A., Higgins, D.G.: Making automated multiple alignments of very large numbers of protein sequences. Bioinformatics 29(8), 989–995 (2013)CrossRefGoogle Scholar
  2. 2.
    Liu, K., Raghavan, S., Nelesen, S., Linder, C.R., Warnow, T.: Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science 324(5934), 1561–1564 (2009)CrossRefGoogle Scholar
  3. 3.
    Liu, K., Warnow, T., Holder, M., Nelesen, S., Yu, J., Stamatakis, A., Linder, C.: SATé-II: Very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst. Biol. 61(1), 90–106 (2011)CrossRefGoogle Scholar
  4. 4.
    Nelesen, S., Liu, K., Wang, L.S., Linder, C., Warnow, T.: DACTAL: divide-and-conquer trees (almost) without alignments. Bioinformatics 28(12), i274–i282 (2012)Google Scholar
  5. 5.
    Liu, K., Linder, C., Warnow, T.: Multiple sequence alignment: a major challenge to large-scale phylogenetics. PLoS Currents: Tree of Life (2010)Google Scholar
  6. 6.
    iPlant Collaborative: iPTOL, Assembling the Tree of Life for the Plant Sciences (2013), https://pods.iplantcollaborative.org/wiki/display/iptol/Home
  7. 7.
    Wong, G.K.S.: The Thousand Transcriptome (1KP) Project (2013), http://www.onekp.com/project.html
  8. 8.
    Katoh, K., Kuma, K., Toh, H., Miyata, T.: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucl. Acids. Res. 33(2), 511–518 (2005)CrossRefGoogle Scholar
  9. 9.
    Wheeler, T., Kececioglu, J.: Multiple alignment by aligning alignments. In: Proceedings of the 15th ISCB Conference on Intelligent Systems for Molecular Biology, pp. 559–568 (2007)Google Scholar
  10. 10.
    Edgar, R.C.: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5(113), 113 (2004)CrossRefGoogle Scholar
  11. 11.
    Edgar, R.C.: MUSCLE: a multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797 (2004)CrossRefGoogle Scholar
  12. 12.
    Guo, S., Wang, L.S., Kim, J.: Large-scale simulating of RNA macroevolution by an energy-dependent fitness model. arXiv:0912.2326 (2009)Google Scholar
  13. 13.
    Price, M., Dehal, P., Arkin, A.: FastTree-2 approximately maximum-likelihood trees for large alignments. PLoS One 5(3), e9490 (2010)Google Scholar
  14. 14.
    Matsen, F., Kodner, R., Armbrust, E.: pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11, 538 (2010)CrossRefGoogle Scholar
  15. 15.
    Mirarab, S., Nguyen, N., Warnow, T.: SEPP: SATé-enabled phylogenetic placement. In: Pacific Symposium on Biocomputing, pp. 247–258 (2012)Google Scholar
  16. 16.
    Eddy, S.: A new generation of homology search tools based on probabilistic inference. Genome Inform. 23, 205–211 (2009)CrossRefGoogle Scholar
  17. 17.
    Finn, R., Clements, J., Eddy, S.: HMMER web server: interactive sequence similarity searching. Nucleic Acids Research 39, W29–W37 (2011)Google Scholar
  18. 18.
    Mirarab, S., Warnow, T.: FastSP: Linear-time calculation of alignment accuracy. Bioinformatics 27(23), 3250–3258 (2011)CrossRefGoogle Scholar
  19. 19.
    Mirarab, S., Nguyen, N., Warnow, T.: Supplementary Online Material, PASTA: ultra-large multiple sequence alignment. figshare (2014), http://dx.doi.org/10.6084/m9.figshare.899770 (retrieved January 13, 2014)
  20. 20.
    Cannone, J., Subramanian, S., Schnare, M., Collett, J., D’Souza, L., Du, Y., Feng, B., Lin, N., Madabusi, L., Muller, K., Pande, N., Shang, Z., Yu, N., Gutell, R.: The Comparative RNA Web (CRW) Site: An Online Database of Comparative Sequence and Structure Information for Ribosomal, Intron and Other RNAs. BioMed. Central Bioinformatics 3(15) (2002)Google Scholar
  21. 21.
    Stamatakis, A.: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinf. 22, 2688–2690 (2006)CrossRefGoogle Scholar
  22. 22.
    Katoh, K., Frith, M.C.: Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28(23), 3144–3146 (2012)CrossRefGoogle Scholar
  23. 23.
    Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G.: Clustal W and Clustal X version 2.0. Bioinformatics 23(21), 2947–2948 (2007)CrossRefGoogle Scholar
  24. 24.
    Boisseau, J., Stanzione, D.: TACC: Texas Advanced Computing Center (2013), http://www.tacc.utexas.edu
  25. 25.
    Suchard, M.A., Redelings, B.D.: BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny. Bioinformatics 22, 2047–2048 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Siavash Mirarab
    • 1
  • Nam Nguyen
    • 1
  • Tandy Warnow
    • 1
  1. 1.Department of Computer ScienceUniversity of Texas at AustinAustinUSA

Personalised recommendations