Skip to main content

Quantum Statistical Mechanics, L-Series and Anabelian Geometry I: Partition Functions

  • Conference paper
  • First Online:
Trends in Contemporary Mathematics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 8))

Abstract

The zeta function of a number field can be interpreted as the partition function of an associated quantum statistical mechanical (QSM) system, built from abelian class field theory.

We introduce a general notion of isomorphism of QSM-systems and prove that it preserves (extremal) KMS equilibrium states.

We prove that two number fields with isomorphic quantum statistical mechanical systems are arithmetically equivalent, i.e., have the same zeta function. If one of the fields is normal over \(\mathbb{Q}\), this implies that the fields are isomorphic. Thus, in this case, isomorphism of QSM-systems is the same as isomorphism of number fields, and the noncommutative space built from the abelianized Galois group can replace the anabelian absolute Galois group from the theorem of Neukirch and Uchida.

This paper is an updated version of part of [9]. We have split the original preprint into various parts, depending on the methods that are used in them. In the current part, these belong mainly to mathematical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Bauer, Über einen Satz von Kronecker. Arch. der Math. u. Phys. (3) 6, 218–219 (1903)

    Google Scholar 

  2. M. Bauer, Über zusammengesetzte Körper. Arch. der Math. u. Phys. (3) 6, 221–222 (1903)

    Google Scholar 

  3. J.-B. Bost, A. Connes, Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory. Selecta Math. (N.S.) 1, 411–457 (1995)

    Google Scholar 

  4. O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2, 2nd edn. Texts and Monographs in Physics (Springer, Berlin, 1997)

    Google Scholar 

  5. A. Connes, M. Marcolli, From physics to number theory via noncommutative geometry, I: quantum statistical mechanics of \(\mathbb{Q}\)-lattices, in Frontiers in Number Theory, Physics, and Geometry I, ed. by P.E. Cartier, B. Julia, P. Moussa, P. Vanhove (Springer, Berlin, 2006), pp. 269–347

    Chapter  Google Scholar 

  6. A. Connes, M. Marcolli, Noncommutative Geometry, Quantum Fields and Motives. American Mathematical Society Colloquium Publications, vol. 55 (American Mathematical Society, Providence, 2008)

    Google Scholar 

  7. A. Connes, C. Consani, M. Marcolli, Noncommutative geometry and motives: the thermodynamics of endomotives. Adv. Math. 214, 761–831 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Cornelissen, Curves, dynamical systems, and weighted point counting. Proc. Natl. Acad. Sci. USA 110(24), 9669–9673 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Cornelissen, M. Marcolli, Quantum statistical mechanics, L-series and anabelian geometry. Preprint, arXiv:1009.0736 (2010)

    Google Scholar 

  10. B. de Smit, R. Perlis, Zeta functions do not determine class numbers. Bull. Am. Math. Soc. (N.S.) 31, 213–215 (1994)

    Google Scholar 

  11. F. Gaßmann, Bemerkungen zur Vorstehenden Arbeit von Hurwitz: Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppen. Math. Z. 25, 661(665)–675 (1926)

    Google Scholar 

  12. E. Ha, F. Paugam, Bost-Connes-Marcolli systems for Shimura varieties. I. Definitions and formal analytic properties. IMRP Int. Math. Res. Pap. 5, 237–286 (2005)

    MathSciNet  Google Scholar 

  13. R. Haag, N.M. Hugenholtz, M. Winnink, On the equilibrium states in quantum statistical mechanics. Comm. Math. Phys. 5, 215–236 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  14. N. Klingen, Arithmetical Similarities. Oxford Mathematical Monographs (The Clarendon Press/Oxford University Press, New York, 1998)

    MATH  Google Scholar 

  15. K. Komatsu, On the adele rings of algebraic number fields. Kōdai Math. Sem. Rep. 28, 78–84 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Laca, N.S. Larsen, S. Neshveyev, On Bost-Connes types systems for number fields. J. Number Theory 129, 325–338 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Neukirch, Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkörper. Invent. Math. 6, 296–314 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Neukirch, Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften, vol. 322 (Springer, Berlin, 1999)

    Google Scholar 

  19. R. Perlis, On the equation ζ K (s) = ζ K(s). J. Number Theory 9, 342–360 (1977)

    Google Scholar 

  20. K. Uchida, Isomorphisms of Galois groups. J. Math. Soc. Jpn. 28, 617–620 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunther Cornelissen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cornelissen, G., Marcolli, M. (2014). Quantum Statistical Mechanics, L-Series and Anabelian Geometry I: Partition Functions. In: Ancona, V., Strickland, E. (eds) Trends in Contemporary Mathematics. Springer INdAM Series, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-05254-0_4

Download citation

Publish with us

Policies and ethics