Simulation Results

Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This chapter shows the simulation results obtained with the chemical optimization algorithm for the optimization of benchmark functions and robot fuzzy control design.


Simulation results Function optimization Fuzzy control design Robot control 


  1. 1.
    F. Valdez, P. Melin, Comparative study of PSO and GA for complex mathematical functions. J. Autom. Mob. Robot. Intell. Syst. 2–1, 43–51 (2008)Google Scholar
  2. 2.
    E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)CrossRefMATHGoogle Scholar
  3. 3.
    L. Astudillo, O. Castillo, L. Aguilar, Intelligent control for a perturbed autonomous wheeled mobile robot: a type-2 fuzzy logic approach. Nonlinear Stud 14–1, 37–48 (2007)MathSciNetGoogle Scholar
  4. 4.
    O. Castillo, R. Martinez-Marroquin, P. Melin, J. Soria, Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot, Bio-inspired hybrid intelligent systems for image analysis and pattern recognition. Stud. Comput. Intell. 256(2009), 247–262 (2009)Google Scholar
  5. 5.
    R. Martinez, O. Castillo, L. Aguilar, Optimization of type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci. 179–13, 2158–2174 (2009)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Leslie Astudillo
    • 1
  • Patricia Melin
    • 1
  • Oscar Castillo
    • 1
  1. 1.Division of Graduate StudiesTijuana Institute of TechnologyTijuanaMexico

Personalised recommendations