Advertisement

Introduction

Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter offers an introduction to the optimization method based on the paradigm of chemical reactions and its application to the design of fuzzy controllers in robotic systems.

Keywords

Chemical optimization Robot control Chemical reactions Optimization 

References

  1. 1.
    L.M. Adleman, Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization of cooperating agents. IEEE Syst. Man Cybern. Soc. 26(1), 29–41 (1996)CrossRefGoogle Scholar
  3. 3.
    R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in Proceedings of 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995, pp. 39–43Google Scholar
  4. 4.
    J.H. Holland, Genetic algorithms. Sci. Am. 267(1), 44–50 (1992)CrossRefGoogle Scholar
  5. 5.
    R. Araújo, A. de, Swarm-based translation-invariant morphological prediction method for financial time series forecasting. Inf. Sci. 180, 4784–4805 (2010)CrossRefMATHGoogle Scholar
  6. 6.
    R. Martinez, O. Castillo, L. Aguilar, Optimization of type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci. 179–13, 2158–2174 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Melendez, O. Castillo, Genetic algorithm with neuro-fuzzy fitness function for optimal fuzzy controller design, in Proceedings of Fuzzy Information Processing Society, NAFIPS’11, El Paso, TX, USA, 2011, pp. 1–5Google Scholar
  8. 8.
    D. Hidalgo, O. Castillo, P. Melin, Type-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms. Inf. Sci. 179, 2123–2145 (2009)CrossRefGoogle Scholar
  9. 9.
    O. Mendoza, P. Melin, G. Licea, A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral. Inf. Sci. 179, 2078–2101 (2009)CrossRefGoogle Scholar
  10. 10.
    R.J. Duro, M. Graña, J. de Lope, On the potential contributions of hybrid intelligent approaches to Multicomponent Robotic System development. Inf. Sci. 180, 2635–2648 (2010)CrossRefGoogle Scholar
  11. 11.
    G. Ma, H. Duan, S. Liu, Improved ant colony algorithm for global optimal trajectory planning of UAV under complex environment. Int. J. Comput. Sci. Appl. 4–3, 57–68 (2007)Google Scholar
  12. 12.
    S. Gao, Z. Tang, H. Dai, J. Zhang, A hybrid clonal selection algorithm. Int. J. Innovative Comput. Inf. Control 4(4), 995–1008 (2008)Google Scholar
  13. 13.
    O. Montiel, O. Castillo, P. Melin, A. Rodriguez Diaz, R. Sepulveda, Human evolutionary model: a new approach to optimization. Inf. Sci. 177, 2075–2098 (2007)CrossRefGoogle Scholar
  14. 14.
    E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)CrossRefMATHGoogle Scholar
  15. 15.
    X. Wang, X.Z. Gao, S.J. Ovaska, A hybrid optimization algorithm based on ant colony and immune principles. Int. J. Comput. Sci. Appl. 4(3), 30–44 (2007)Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Leslie Astudillo
    • 1
  • Patricia Melin
    • 1
  • Oscar Castillo
    • 1
  1. 1.Division of Graduate StudiesTijuana Institute of TechnologyTijuanaMexico

Personalised recommendations