Skip to main content

The Oxygen Evolution Reaction: Water Oxidation Photocatalysis—Photocatalytic Water Oxidation with Suspended alpha-Fe2O3 Particles—Effects of Nanoscaling

  • Chapter
  • First Online:
Inorganic Metal Oxide Nanocrystal Photocatalysts for Solar Fuel Generation from Water

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Iron oxide has recently been shown to be active on the nanoscale as a photoanode material and is gaining interest due to the material’s low cost, abundance, and visible light absorption. It has a phonon assisted visible light excited band gap of 2.06 eV which corresponds to the middle of the visible region (600 nm) near the peak intensity of the solar spectrum. This d–d transition is accompanied by a direct band gap of 3.3 eV (375 nm), associated with the ligand to metal charge transfer. In this work, we show for the first time that freely dispersed Fe2O3 nanocrystals are catalytically active for the photo-oxidation of water. Three morphologies of hematite were compared, including bulk-type-α-Fe2O3 (Bulk-Fe2O3, 120 nm), ultrasonicated Bulk-Fe2O3 (Sonic-Fe2O3, 44 nm), and synthetic Fe2O3 (Nano-Fe2O3, 5.4 nm) obtained by hydrolysis of FeCl .3 6H2O. Each material showed similar optical properties, and the water oxidation overpotentials were derived from cyclic voltammetry. Versus NHE at pH = 7, at 1.0 mA cm−2, the extra chemical potential energy required to oxidize water increased with particle size as η = + 0.43 V for Nano-Fe2O3, η = + 0.63 V for Sonic-Fe2O3, and η = + 0.72 V for Bulk- Fe2O3. According to X-ray diffraction, all phases were presented in the alpha structure type, with Nano-Fe2O3 also containing traces of β-FeOOH. When suspended in a sacrificial electron accepting solution of aqueous AgNO3 (20 mM) and irradiated with UV/Vis (λ > 250 nm) or visible (λ > 400 nm) light, all three materials (5.6 mg) evolved O2 from water. The rate of O2 evolution increased with decreasing particle size with 250 mmolh−1g−1 for Bulk-Fe2O3, 381 mmolh−1 g−1 for Sonic-Fe2O3 and 1072 mmolh−1 g−1 for Nano-Fe2O3. While Bulk-Fe2O3 showed turnover numbers (TON = moles O2/moles Fe2O3) less than unity (0.49), the other two nanoscale materials showed catalytic turnovers of 1.10 for Sonic-Fe2O3 and 1.13 for Nano-Fe2O3, showing that the nanoscale morphology was beneficial for catalytic activity.

This chapter appeared as: “T.-K. Townsend, et al., Photocatalytic Water Oxidation with Suspended alpha- Fe 2 O 3 Particles-Effects of Nanoscaling, Energy Environ. Sci. 4, 4270–4275 (2011).”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.A. Frame, E.C. Carroll, D.S. Larsen, M. Sarahan, N.D. Browning, F.E. Osterloh, Chem. Commun. 19, 2206–2208 (2008)

    Article  CAS  Google Scholar 

  2. F.A. Frame, F.E. Osterloh, J. Phys. Chem. C 114, 10628–10633 (2010)

    Article  CAS  Google Scholar 

  3. J.H. Kennedy, K.W. Frese, J. Electrochem. Soc. 124, C130–C130 (1977)

    Article  Google Scholar 

  4. A.G. Joly, J.R. Williams, S.A. Chambers, G. Xiong, W.P. Hess, D.M. Laman, J. Appl. Phys. 99, 6 (2006)

    Article  CAS  Google Scholar 

  5. N.J. Cherepy, D.B. Liston, J.A. Lovejoy, H.M. Deng, J.Z. Zhang, J. Phys. Chem. B 102, 770–776 (1998)

    Article  CAS  Google Scholar 

  6. A.J. Bosman, H.J. Vandaal, Adv. Phys. 19, 1–7 (1970)

    Article  CAS  Google Scholar 

  7. K. Itoh, J.O. Bockris, J. Electrochem. Soc. 131, 1266–1271 (1984)

    Article  CAS  Google Scholar 

  8. S. Mohanty, J. Ghose, J. Phys. Chem. Solids 53, 81–91 (1992)

    Article  CAS  Google Scholar 

  9. J.A. Glasscock, P.R.F. Barnes, I.C. Plumb, N. Savvides, J. Phys. Chem. C 111, 16477–16488 (2007)

    Article  CAS  Google Scholar 

  10. T. Arai, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, J. Comb. Chem. 9, 574–581 (2007)

    Article  CAS  Google Scholar 

  11. C.J. Sartoretti, B.D. Alexander, R. Solarska, W.A. Rutkowska, J. Augustynski, R. Cerny, J. Phys. Chem. B 109, 13685–13692 (2005)

    Article  CAS  Google Scholar 

  12. Y.S. Hu, A. Kleiman-Shwarsctein, A.J. Forman, D. Hazen, J.N. Park, E.W. McFarland, Chem. Mater. 20, 3803–3805 (2008)

    Article  CAS  Google Scholar 

  13. R.L. Spray, K.J. McDonald, K.S. Choi, J. Phys. Chem. C 115, 3497–3506 (2011)

    Article  CAS  Google Scholar 

  14. C.M. Eggleston, A.J.A. Shankle, A.J. Moyer, I. Cesar, M. Gratzel, Aquat. Sci. 71, 151–159 (2009)

    Article  CAS  Google Scholar 

  15. A. Kay, I. Cesar, M. Gratzel, J. Am. Chem. Soc. 128, 15714–15721 (2006)

    Article  CAS  Google Scholar 

  16. K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych and M. Gratzel, J. Am. Chem. Soc 132, 7436–7444 (2010)

    Google Scholar 

  17. R.H. Goncalves, B.H.R. Lima, E.R. Leite, J. Am. Chem. Soc. 133, 6012–6019 (2011)

    Article  CAS  Google Scholar 

  18. T.P. Raming, A.J.A. Winnubst, C.M. van Kats, A.P. Philipse, J. Colloid Interface Sci. 249, 346–350 (2002)

    Article  CAS  Google Scholar 

  19. Y. Xiong, Y. Xie, S.W. Chen, Z.Q. Li, Chemistry-a Eur. J 9, 4991–4996 (2003)

    Article  CAS  Google Scholar 

  20. R.S. Sapieszko, R.C. Patel, E. Matijevic, J. Phys. Chem. 81, 1061–1068 (1977)

    Article  CAS  Google Scholar 

  21. L.A. Marusak, R. Messier, W.B. White, J. Phys. Chem. Solids 41, 981–984 (1980)

    Article  CAS  Google Scholar 

  22. E. Matijevic, P. Scheiner, J. Colloid Interface Sci. 63, 509–524 (1978)

    Article  CAS  Google Scholar 

  23. M.P. Dareedwards, J.B. Goodenough, A. Hamnett, P.R. Trevellick, J. Chem. Soc. Farad. T. I. 79, 2027–2041 (1983)

    Article  CAS  Google Scholar 

  24. F. Le Formal, N. Tetreault, M. Cornuz, T. Moehl, M. Gratzel, K. Sivula, Chemical Science 2, 737–743 (2011)

    Article  CAS  Google Scholar 

  25. K.S. Suslick, G.J. Price, Annu. Rev. Mater. Sci. 29, 295–326 (1999)

    Article  CAS  Google Scholar 

  26. Y. Xu, M.A.A. Schoonen, Am. Mineral. 85, 543–556 (2000)

    CAS  Google Scholar 

  27. M. Lanz, D. Schurch, G. Calzaferri, J. Photochem. Photobiol., A 120, 105–117 (1999)

    Article  CAS  Google Scholar 

  28. D.A. Totir, B.D. Cahan, D.A. Scherson, Electrochim. Acta 45, 161–166 (1999)

    Article  CAS  Google Scholar 

  29. H. Gerischer, Semiconductor electrode reactions in Adv. Electrochem. & Electrochem. Eng., ed. by P. Delahay, (Interscience, New York, 1961), 1, pp. 139–232

    Google Scholar 

  30. A.J. Nozik, R. Memming, J. Phys. Chem. 100, 13061–13078 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

FEO thanks Research Corporation for Science Advancement for a Scialog award. This work was further supported by the National Science Foundation (NSF, grant 0829142) and by the US Department of Energy (grant FG02–03ER46057). TKT thanks NSF for a Graduate Research Fellowship 2011. N.D.B. thanks the US Department of Energy for support (grant FG02–03ER46057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy K. Townsend .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Townsend, T.K., Sabio, E.M., Browning, N.D., Osterloh, F.E. (2014). The Oxygen Evolution Reaction: Water Oxidation Photocatalysis—Photocatalytic Water Oxidation with Suspended alpha-Fe2O3 Particles—Effects of Nanoscaling. In: Inorganic Metal Oxide Nanocrystal Photocatalysts for Solar Fuel Generation from Water. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-05242-7_3

Download citation

Publish with us

Policies and ethics