Abstract
We investigate the interaction of intracellular calcium spatio-temporal variations with the self-sustained contractions in cardiac myocytes. A 3D continuum mathematical model is presented based on a hyperelastic description of the passive mechanical properties of the cell, combined with an active-strain framework to describe the active shortening of myocytes and its coupling with cytosolic and sarcoplasmic calcium dynamics. Some numerical tests of combined boundary conditions and ionic activations illustrate the ability of our model in reproducing key experimentally established features. Potential applications of the study for predicting pathological subcellular mechanisms affecting e.g. cardiac repolarization are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berry, M.F., Engler, A.J., Woo, Y.J., Pirolli, T.J., Bish, L.T., Jayasankar, V., Morine, K.J., Gardner, T.J., Discher, D.E., Sweeney, H.L.: Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am. J. Physio. Heart. Circ. Physiol. 290, H2196–2203 (2006)
Bers, D.M.: Cardiac excitation—contraction coupling. Nature 415, 198–205 (2002)
Bloom, S.: Spontaneous rhythmic contraction of separated heart muscle cells. Science 167(3926), 1727–1729 (1970)
Cherry, E.M., Fenton, F.H.: Visualization of spiral and scroll waves in simulated and experimental cardiac tissue. New J. Phys. 10, 125016 (2008)
Bueno-Orovio, A., Cherry, E.M., Fenton, F.H.: Minimal model for human ventricular action potentials in tissue. J. Theor. Biol. 253, 544–560 (2008)
Capogrossi, M.C., Suarez-Isla, B.A., Lakatta, E.G.: The interaction of electrically stimulated twitches and spontaneous contractile waves in single cardiac myocytes. J. Gen. Physiol., 88, 615–633 (1986)
Cherubini, C., Filippi, S., Gizzi, A.: Electroelastic unpinning of rotating vortices in biological excitable media. Phys. Rev. E, 85, 031915 (2012)
Cherubini, C., Filippi, S., Nardinocchi, P., Teresi, L.: An electromechanical model of cardiac tissue: Constitutive issues and electrophysiological effects.Prog. Biophys. Mol. Biol., 97, 562–573 (2008)
Delbridge, L.M.D., Roos, K.P.: Optical methods to evaluate the contractile function of unloaded isolated cardiac myocytes. J. Molec. Cell Cardiol., 29, 11–25 (1997)
Deshpande, V.S., McMeeking, R.M., Evans, A.G.: A bio-chemo-mechanical model for cell contractility, PNAS, 103, 14015–14020 (2006)
Deshpande, V.S., Mrksich, M., McMeeking, R.M., Evans, A.G.:A bio-mechanical model for coupling cell contractility with focal adhesion formation, J. Mech. Phys. Sol., 56, 1484–1510 (2008)
Fabiato, A.: Appraisal of the physiological relevance of two hypothesis for the mechanism of calcium release from the mammalian cardiac sarcoplasmic reticulum: calcium-induced release versus charge-coupled release, Mol. Cell. Biochem., 89, 135–140 (1989).
Fabiato, A., Fabiato, F.: Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol. 249(3), 469–495 (1975)
Fenton, F.H., Cherry, E.M.: Models of cardiac cells, Scholarpedia 3, 1868 (2008)
Fenton, F.H., Gizzi, A., Cherubini, C., Pomella, N., Filippi, S.: Role of temperature on nonlinear cardiac dynamics, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys., 87, 042709 (2013)
Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Engrg., 79, 1309–1331 (2009)
Gizzi, A., Cherubini, C., Filippi, S., Pandolfi, A.: Theoretical and Numerical Modeling of Nonlinear Electromechanics with applications to Biological Active Media, Commun. Comput. Phys. 17(1), 93–126 (2015)
Göktepe, S., Abilez, O.J., Kuhl, E.: A generic approach towards finite growth with examples of athletes heart, cardiac dilation, and cardiac wall thickening. J. Mech. Phys. Sol., 58, 1661–1680 (2010)
Goldbeter, A., Dupont, G., Berridge, M.J.: Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl. Acad. Sci. USA, 87, 1461–1465 (1990)
Goldmann, W.H. Mechanotransduction in cells. Cell. Biol. Int. 36, 567–70 (2012)
Grosberg, A., Kuo, P.L., Guo, C.L., Geisse, N.A., Bray, M.A., Adams, W.J., Sheehy, S.P., Parker, K.K.: Self-organization of muscle cell structure and function. PLoS Comp. Biol., 7, e1001088 (2011)
Hatano, A., Okada, J., Washio, T., Hisada, T., Sugiura, S.: A three-dimensional simulation model of cardiomyocyte integrating excitation-contraction coupling and metabolism. Biophys. J., 101, 2601–2610 (2011)
Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil. Trans. R. Soc. Lond. A, 367, 3445–3475 (2009)
Humphrey, J.D.: Stress, strain, and mechanotransduction in cells. J. Biomech. Eng. 123, 638–641 (2001)
Iribe, G., Helmes, M., Kohl, P.: Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. Am. J. Physiol. Heart Circ. Physiol., 292, H1487–H1497 (2007)
Iribe, G., Ward, C.W., Camelliti, P., Bollensdorff, C., Mason, F., Burton, R.A.B., Garny, A., Morphew, M., Hoenger, A., Lederer, W.J., Kohl, P.: Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circ. Res., 104, 787–795 (2009)
Iyer, V., Mazhari, R., Winslow, R.L.: A computational model of the human left ventricular epicardial myocyte. Biophys. J., 87, 1507–1525 (2004)
Kamgoué, A., Ohayon, J., Usson, Y., Riou, L., Tracqui, P.: Quantification of cardiomyocyte contraction based on image correlation analysis. Cytometry Part A 75, 298–308 (2009)
Keener, J., Sneyd, J.: Mathematical physiology, Springer-Verlag, New York (1998)
Kockskåmper, J., von Lewinski, D., Khafaga, M., Elgner, A., Grimm, M., Eschenhagen, T., Gottlieb, P.A., Sachs, F., Pieske, B.: The slow force response to stretch in atrial and ventricular myocardium from human heart: functional relevance and subcellular mechanisms. Prog. Biophys. Mol. Biol., 97, 250–267 (2008)
Laadhari, A., Ruiz-Baier, R., Quarteroni, A.: Fully Eulerian finite element approximation of a fluid-structure interaction problem in cardiac cells. Int. J. Numer. Meth. Engrg., 96, 712–738 (2013)
Lubarda, V.A.: Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics. Appl. Mech. Rev., 57, 95–108 (2004)
Li, J., Patel, V.V., Radice, G.L.: Dysregulation of cell adhesion proteins and cardiac arrhythmogenesis, Clin. Med. Res., 4, 42–52 (2006)
Li, W., Gurev, V., McCulloch, A.D., Trayanova, N.A.: The role of mechanoelectric feedback in vulnerability to electric shock, Prog. Biophys. Mol. Biol., 97, 461–478 (2008)
Louch, W.E., Stokke, M.K., Sjaastad, I., Christensen, G., Sejersted, O.M.: No rest for the weary: diastolic calcium homeostasis in the normal and failing myocardium, Physiology, 27, 308–323 (2008)
Marshall, K.L., Lumpkin, E.A.: The molecular basis of mechanosensory transduction. Adv. Exp. Med. Biol., 739, 142–55 (2012)
McCain, M.L., Lee, H.L., Aratyn-Schaus, Y., Kléber, A.G., Parker, K.K. Cooperative coupling of cell-matrix and cell-cell adhesions in cardiac muscle. PNAS, 109, 9881–9886 (2012)
Nardinocchi, P., Teresi, L.: Electromechanical modeling of anisotropic cardiac tissues. Math. Mech. Solids, 18, 576–591 (2013)
Nobile, F., Quarteroni, A., Ruiz-Baier, R.: An active strain electromechanical model for cardiac tissue. Int. J. Numer. Meth. Biomed. Engrg., 28, 52–71 (2012)
Novak, I.L., Slepchenko, B.M., Mogilner, A., Loew, L.M.: Cooperativity between cell contractility and adhesion. Phys. Rev. Lett., 93, 268109 (2004)
Nishimura, S., Seo, K., Nagasaki, M., Hosoya, Y., Yamashita, H., Fujita, H., Nagai, R., Sugiura, S.: Responses of single-ventricular myocytesto dynamic axial stretching. Prog. Biophys. Mol. Biol., 97, 282–297 (2008)
Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Comp. Meth. Appl. Mech. Eng., 171, 419–444 (1999)
Ortiz, M., Pandolfi, A.: A variational Cam-clay theory of plasticity. Comp. Meth. Appl. Mech. Eng., 193, 2645–2666 (2004).
Pandolfi, A., Conti, S., Ortiz, M.: A recursive-faulting model of distributed damage in confined brittle materials. J. Mech. Phys. Sol., 54, 1972–2003 (2006)
Parker, K.K., Tan, J., Chen, C.S., Tung, L.: Myofibrillar architecture in engineered cardiac myocytes. Circ. Res., 103, 340–342 (2008)
Pullan, A.J., Buist, M.L., Cheng, L.K.: Mathematically Modeling the Electrical Activity of the Heart: From Cell to Body Surface and Back, World Scientific, Singapore (2005)
Pumir, A., Sinha, S., Sridhar, S., Argentina, M., Horning, M., Filippi, S., Cherubini, C., Luther, S., Krinsky, V.: Wave-train-induced termination of weakly anchored vortices in excitable media. Phys. Rev. E, 82, 010901(R) (2010)
Rice, J.J., Wang, F., Bers, D.M., de Tombe, P.P. Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys. J., 95, 2368–2390 (2008)
Ronan, W., Deshpande, V.S., McMeeking, R.M., McGarry, J.P.: Numerical investigation of the active role of the actin cytoskeleton in the compression resistance of cells. J. Mech. Behav. Biomed. Mat., 14, 143–157 (2012)
Rossi, S., Lassila, T., Ruiz-Baier, R., Sequeira, A., Quarteroni, A.: Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics. Eur. J. Mech. A/Solids 48, 129–142 (2014)
Ruiz-Baier, R., Gizzi, A., Rossi, S., Cherubini, C., Laadhari, A., Filippi, S., Quarteroni, A.: Mathematical modelling of active contraction in isolated cardiomyocytes, Math. Med. Biol. 31, 259–283 (2014)
Seol, C.A., Kim, W.T., Ha, J.M., Choe, H., Jang, Y.J., Youm, J.B., Earm, Y.E., Leem, C.H.: Stretch-activated currents in cardiomyocytes isolated from rabbit pulmonary veins. Prog. Biophys. Mol. Biol., 97, 217–231 (2008)
Sheehy, S.P., Grosberg, A., Parker, K.K.: The contribution of cellular mechanotransduction to cardiomyocyte form and function. Biomech. Model. Mechanobiol. 11, 1227–1239 (2012)
Sneyd, J., Ed.: Tutorials in Mathematical Biosciences II: Mathematical Modeling of Calcium Dynamics and Signal Transduction, Springer, ISBN 978-3-540-25439-3 (2005)
Stålhand, J., Klarbring, A., Holzapfel, G.A.: A mechanochemical 3D continuum model for smooth muscle contraction under finite strains. J. Theoret. Biol., 268, 120–130 (2011).
Stern, M.D.: Theory of excitation-contraction coupling in cardiac muscle. Biophys. J., 63, 497–517 (1992)
Subramanian, S., Viatchenko-Karpinski, S., Lukyanenko, V., Györk, S., Wiesner, T.F. Underlying mechanisms of symmetric calcium wave propagation in rat ventricular myocytes. Biophys. J., 80, 1–11 (2001)
Taber, L.A.: Biomechanics of cardiovascular development. Annu. Rev. Biomed. Eng., 3, 1–25 (2001)
Takamatsu, T., Wier, W.G.: Calcium waves in mammalian heart: quantification of origin, magnitude, waveform and velocity. Fed. Am. Soc. Exp. Biol., 4, 1519–1525 (1990)
Ter Keurs, H.E.D.J., Boyden, P.A.: Calcium and arrhythmogenesis. Physiol. Rev. 87(2), 457–506 (2007)
Tracqui, P., Ohayon, J.: An integrated formulation of anisotropic force-calcium relations driving spatio-temporal contractions of cardiac myocytes. Phil. Trans. Royal Soc. London A, 367, 4887–4905 (2009)
Tveito, A., Lines, G.T., Edwards, A.G., Maleckar, M.M., Michailova, A., Hake, J., McCulloch, A.D.: Slow Calcium-Depolarization-Calcium waves may initiate fast local depolarization waves in ventricular tissue. Prog. Biophys. Molec. Biol., 110, 295–304 (2012)
Vogel, F., Bustamante, R., Steinmann, P.: On some mixed variational principles in electro-elastostatics. Int. J. Nonlin. Mech., 47, 341–354 (2012)
Washio, T., Okada, J. Sugiura, S., Hisada, T.: Approximation for cooperative interactions of a spatially-detailed cardiac sarcomere model. Cell. Mol. Bioeng., 5, 113–126 (2012)
Ward, M.L., Williams, I.A., Chu, Y., Cooper, P.J., Ju, Y.K., Allen, D.G.: Stretch-activated channels in the heart: contributions to length-dependence and to cardiomyopathy.Prog. Biophys. Mol. Biol., 97, 232–249 (2008)
Zhang, Y., Sekar, R.B., McCulloch, A.D., Tung, L.: Cell cultures as models of cardiac mechanoelectric feedback. Prog. Biophys. Mol. Biol., 97, 367–382 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Gizzi, A., Ruiz-Baier, R., Rossi, S., Laadhari, A., Cherubini, C., Filippi, S. (2015). A Three-dimensional Continuum Model of Active Contraction in Single Cardiomyocytes. In: Quarteroni, A. (eds) Modeling the Heart and the Circulatory System. MS&A, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-05230-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-05230-4_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05229-8
Online ISBN: 978-3-319-05230-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)