The Density Character of the Space \(C_p(X)\)

  • María Muñoz GuillermoEmail author
  • J. C. Ferrando
  • M. López-Pellicer
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 80)


The main purpose of this survey is to introduce to the reader the adequate framework and motivation for the recent results obtained relating the density character and the space of the continuous functions, [16]. The interest in this cardinal function has been continuous over the years. We will offer a vision of the process along the time and we will point out different general results. Specially, we are interested in those in which the space of the continuous functions appears as well as those in which duality plays an important role. Of course, precise classes of spaces are considered in each case to apply the results, which will take us forward to expose a parallel development and description of a specific class, in fact it will be the development of a different cardinal function, the number of Nagami, which measures the specific property of the space what makes things work well.


Density character Lindelöf \(\varSigma \)-space Locally convex space Space of the continuous functions Weakly compact generated 


  1. 1.
    Arkhangel’ski\(\breve{1}\), A.V.: Topological Function Spaces, Mathematics and Its Applications (Soviet Series), vol. 78. Kluwer, Dordrecht (1992)Google Scholar
  2. 2.
    Amir, D., Lindenstrauss, J.: The structure of weakly compact sets in Banach spaces. Ann. Math. 88, 35–46 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Avilés, A.: The number of weakly compact sets which generate a Banach space. Israel J. Math. 159, 189–204 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Canela, M.A.: \(K\)-analytic locally convex spaces. Port. Math. 41, 105–117 (1982)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Cascales, B.: On \(K\)-analytic locally convex spaces. Arch. Math. 49, 232–244 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cascales, C., Muñoz, M., Orihuela, J.: The number of \(K\)-determination of topological spaces. RACSAM 106, 341–357 (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cascales, C., Oncina, L.: Compactoid filters and USCO maps. J. Math. Anal. Appl. 282, 826–845 (2003)Google Scholar
  8. 8.
    Cascales, B., Orihuela, J.: On compactness in locally convex spaces. Math. Z. 195, 365–381 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Cascales, B., Orihuela, J.: On pointwise and weak compactness in spaces of continuous functions. Bull. Soc. Math. Belg. Ser. B 40, 331–352 (1988)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–297 (1953)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Choquet, G.: Ensembles \(K\)-analytiques et \(K\)-sousliniens. Cas général et cas métrique. Ann. Inst. Fourier 9, 75–89 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dunford, N., Schwartz, J.T.: Linear Operators. Part I. Interscience Pub, New York (1958)zbMATHGoogle Scholar
  13. 13.
    Engelking, R.: General Topology. PWN-Polish Scientific Publishers, Warsaw (1977)zbMATHGoogle Scholar
  14. 14.
    Fabian, M.: Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley and Sons, New York (1997)Google Scholar
  15. 15.
    Fabian, M., Habala, P., Hájek, P., Montesinos, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite Dimensional Geometry. CMS Books in Mathematics, Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    Ferrando, J.C., Ka̧kol, J., López-Pellicer, M., Muñoz Guillermo, M.: Some cardinal inequalities for spaces \(C_p(X)\). Topology Appl. 160, 1102–1107 (2013)Google Scholar
  17. 17.
    Fremlin, D.H.: \(K\)-analytic spaces with metrizable compacts. Mathematika 24, 257–261 (1977)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Hewitt, E.: A problem of set-theoretic topology. Duke Math. J. 10, 309–333 (1943)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hewitt, E.: A remark on density characters. Bull. Amer. Math. Soc. 52, 641–643 (1946)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Hödel, R.: On a theorem of Arkhangel’skiĭ concerning Lindelöf \(p\)-spaces. Can. J. Math. 27, 459–468 (1975)CrossRefGoogle Scholar
  21. 21.
    Hödel, R.: Cardinal Functions I. In: Kunen, K., Vaughan, J.E. (eds.) Handbook of Set-Theoretic Topology, pp. 1–61. Elsevier, Amsterdam (1984)Google Scholar
  22. 22.
    Hunter, R.J., Lloyd, J.: Weakly compactly generated locally convex spaces. Proc. Math. Proc. Cambridge Philos. Soc. 82, 85–98 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Jarchow, H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981)CrossRefzbMATHGoogle Scholar
  24. 24.
    Ka̧kol, J., Kubiś, W., López-Pellicer, M.: Descriptive Topology in Selected Topics of Functional Analysis. Springer, New York (2010)Google Scholar
  25. 25.
    Kelley, J.L.: General Topology. Springer, New York (1975)zbMATHGoogle Scholar
  26. 26.
    Lindenstrauss, J.: Weakly compact sets: their topological properties and the Banach spaces they generate. Proc. Int. Symp. Topology Ann. Math. Stud. 69, 235–273 (1972)MathSciNetGoogle Scholar
  27. 27.
    McCoy, R.A., Ntantu, I.: Topological Properties of Spaces of Continuous Functions. Springer, Berlin (1980)Google Scholar
  28. 28.
    Muñoz, M.: Bounds using the index of Nagami. Rocky Mountain J. Math. 41, 1977–1986 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Nagami, K.: \(\Sigma \)-spaces. Fund. Math. 61, 169–192 (1969)MathSciNetGoogle Scholar
  30. 30.
    Noble, N.: The density character of function spaces. Proc. Amer. Math. Soc. 42, 228–233 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Orihuela, J.: Pointwise compactness in spaces of continuous functions. J. London Math. Soc. s2–36, 143–152 (1987)Google Scholar
  32. 32.
    Pondiczery, E.S.: Power problems in abstract spaces. Duke Math. J. 11, 835–837 (1944)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Pospíšil, B.: Sur la puissance d’un espace contenant une partie dense de puissance donnée. Časopis pro pěstování Matematiky a Fysiky 67, 89–96 (1937–1938)Google Scholar
  34. 34.
    Rosenthal, H.P.: The heredity problem for weakly compactly generated Banach spaces. Comp. Math. 124, 83–111 (1970)Google Scholar
  35. 35.
    Talagrand, M.: Espaces de Banach faiblement \(K\)-analytiques. Ann. Math. 110, 407–438 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Talagrand, M.: Sur la \(K\)-analyticite de certains espaces d’operateurs. Israel J. Math. 32, 124–130 (1979)Google Scholar
  37. 37.
    Tkachuk, V.: Lindelöf \(\Sigma \)-spaces: an omnipresent class. RACSAM 104, 221–244 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Uspenskiĭ, V.V.: A characterization of realcompactness in terms of the topology of pointwise convergence on the function space. Comm. Math. Univ. 24, 121–126 (1983)Google Scholar
  39. 39.
    Valdivia, M.: Topics in Locally Convex Spaces. Mathematics Studies, vol. 67. North-Holland Publishing, Amsterdam (1982)Google Scholar
  40. 40.
    Vašák, L.: On a generalization of weakly compactly generated Banach spaces. Studia Math. 70, 11–19 (1981)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • María Muñoz Guillermo
    • 1
    Email author
  • J. C. Ferrando
    • 2
  • M. López-Pellicer
    • 3
  1. 1.Departamento de Matemática Aplicada y EstadísticaUniversidad Politécnica de CartagenaCartagenaSpain
  2. 2.Centro de Investigación OperativaUniversidad Miguel HernándezElcheSpain
  3. 3.Departmento de Matemática Aplicada and IUMPAUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations