Cantor Sets, Bernoulli Shifts and Linear Dynamics

  • Salud Bartoll
  • Félix Martínez-Giménez
  • Marina Murillo-Arcila
  • Alfredo PerisEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 80)


Our purpose is to review some recent results on the interplay between the symbolic dynamics on Cantor sets and linear dynamics. More precisely, we will give some methods that allow the existence of strong mixing measures invariant for certain operators on Fréchet spaces, which are based on Bernoulli shifts on Cantor spaces. Also, concerning topological dynamics, we will show some consequences for the specification properties.


Hypercyclic operators Specification properties Strong mixing measures Weighted shifts 



This work is supported in part by MICINN and FEDER, Projects MTM2010-14909 and MTM2013-47093-P. The third author is supported by a grant from the FPU Program of MEC. The second and fourth authors were partially supported by GVA, Project PROMETEOII/2013/013.


  1. 1.
    Badea, C., Grivaux, S.: Unimodular eigenvalues, uniformly distributed sequences and linear dynamics. Adv. Math. 211, 766–793 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bartoll, S., Martínez-Giménez, F., Peris, A.: The specification property for backward shifts. J. Difference Equ. Appl. 18, 599–605 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bartoll, S., Martínez-Giménez, F., Peris, A.: The specification property in linear dynamics. PreprintGoogle Scholar
  4. 4.
    Bauer, W., Sigmund, K.: Topological dynamics of transformations induced on the space of probability measures. Monatsh. Math. 79, 81–92 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bayart, F., Grivaux, S.: Hypercyclicity and unimodular point spectrum. J. Funct. Anal. 226, 281–300 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bayart, F., Grivaux, S.: Frequently hypercyclic operators. Trans. Amer. Math. Soc. 358, 5083–5117 (2006)Google Scholar
  7. 7.
    Bayart, F., Grivaux, S.: Invariant Gaussian measures for operators on Banach spaces and linear dynamics. Proc. Lond. Math. Soc. 3(94), 181–210 (2007)MathSciNetGoogle Scholar
  8. 8.
    Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bayart, F., Matheron, É.: Mixing operators and small subsets of the circle. Preprint, arXiv:1112.1289v1
  10. 10.
    Bayart, F., Ruzsa, I.Z.: Frequently hypercyclic weighted shifts. Ergodic Theory Dynam. Systems (to appear)Google Scholar
  11. 11.
    Bonilla, A., Grosse-Erdmann, K.G.: Frequently hypercyclic operators and vectors. Ergodic Theory Dynam. Systems 27, 383–404 (2007). [Erratum: Ergodic Theory Dynam. Systems 29, 1993–1994 (2009)]Google Scholar
  12. 12.
    Bowen, R.: Topological entropy and axiom A. In: Global Analysis (Proceedings of Symposium on Pure Mathematics, vol. XIV, Berkeley, California, 1968). American Mathematical Societ, Providence, R.I., 23–41 (1970)Google Scholar
  13. 13.
    De la Rosa, M., Frerick, L., Grivaux, S., Peris, A.: Frequent hypercyclicity, chaos, and unconditional Schauder decompositions. Israel J. Math. 190, 389–399 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Denker, M., Grillenberger, C., Sigmund, K.: Ergodic Theory on Compact Spaces. Springe, Berlin (1976)Google Scholar
  15. 15.
    Einsiedler, M., Ward, T.: Ergodic Theory with a View Towards Number Theory. Graduate Texts in Mathematics 259. Springer, London (2011)Google Scholar
  16. 16.
    Flytzanis, E.: Unimodular eigenvalues and linear chaos in Hilbert spaces. Geom. Funct. Anal. 5, 1–13 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Grivaux, S.: A probabilistic version of the frequent hypercyclicity criterion. Studia Math. 176, 279–290 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Grivaux, S.: A new class of frequently hypercyclic operators. Indiana Univ. Math. J. 60, 1177–1201 (2011)Google Scholar
  19. 19.
    Grosse-Erdmann, K.G.: Hypercyclic and chaotic weighted shifts. Studia Math. 139, 47–68 (2000)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear Chaos. Universitext. Springer, London (2011)Google Scholar
  21. 21.
    Lampart, M., Oprocha, P.: Shift spaces, \(\omega \)-chaos and specification property. Topology Appl. 156, 2979–2985 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Murillo-Arcila, M., Peris, A.: Strong mixing measures for linear operators and frequent hypercyclicity. J. Math. Anal. Appl. 398, 462–465 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Oprocha, P.: Specification properties and dense distributional chaos. Discrete Contin. Dyn. Syst. 17, 821–833 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Oprocha, P., Štefánková, M.: Specification property and distributional chaos almost everywhere. Proc. Amer. Math. Soc. 136, 3931–3940 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Rudnicki, R.: Gaussian measure-preserving linear transformations. Univ. Iagel. Acta Math. 30, 105–112 (1993)MathSciNetGoogle Scholar
  26. 26.
    Rudnicki, R.: Chaoticity and invariant measures for a cell population model. J. Math. Anal. Appl. 393, 151–165 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Sigmund, K.: On dynamical systems with the specification property. Trans. Amer. Math. Soc. 190, 285–299 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Walters, P.: An Introduction to Ergodic Theory. Springer, New York (1982)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Salud Bartoll
    • 1
  • Félix Martínez-Giménez
    • 1
  • Marina Murillo-Arcila
    • 1
  • Alfredo Peris
    • 1
    Email author
  1. 1.IUMPA, Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations