Advertisement

Some Aspects in the MathematicalWork of Jerzy K a̧ kol

  • Manuel López-Pellicer
  • Santiago MollEmail author
Conference paper
  • 1.1k Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 80)

Abstract

We present some selected topics of the research developed by Professor Jerzy K a̧ kol with his collaborators. After some comments on K a̧ kol’s Ph.D. dissertation we group together the chosen contributions in three sections: Topological vector spaces, Descriptive Topology and Functional Analysis and Other aspects in K a̧ kol’s work. For the sake of clarity the sections have been divided in subsections.

Keywords

Analytic space Baire type condition Compactness Descriptive topology Fredholm operator Functional analysis Hahn–Banach extension property Hewitt spaces K-analytic Locally convex space Non-archimedean functional analysis Resolution Space of the continuous functions Sequential condition Topological vector space 

Notes

Acknowledgments

The first named author has been supported by Generalitat Valenciana, Conselleria d’Educació Cultura i Esport, Spain, Grant PROMETEO/2013/058.

References

  1. 1.
    Alexiewicz, A.: The two-norm spaces. Stud. Math. (Ser. Specjalna) Zeszyt, 1, 17–20 (1963)Google Scholar
  2. 2.
    Amemiya, I., Ichiro, Kōmura, Y.: Über nicht-vollständige Montelräume. Math. Ann. 177, 273–277 (1968)Google Scholar
  3. 3.
    Angosto, C., Ka̧kol, J., López-Pellicer, M.: A quantitative approach to weak compactnesss in Fréchet spaces and spaces \(C(X)\). J. Math. Anal. Appl. 403, 13–22 (2013)Google Scholar
  4. 4.
    Angosto, C., Ka̧kol, J., Kubzdela, A.: A quantitative version of Krein’s theorems for Fréchet spaces. Arch. Math. 101, 65–77 (2013)Google Scholar
  5. 5.
    Angosto, C., Ka̧kol, J., Kubzdela, A.: Measures of weak noncompactness in non-archimedean Banach spaces. J. Convex Anal. 21(3) (2014)Google Scholar
  6. 6.
    Arkhangel’skiĭ, A.V.: A survey of \(C_{p}\)-theory. Questions Answers Gen. Topology 5, 1–109 (1987)MathSciNetGoogle Scholar
  7. 7.
    Arkhangel’skiĭ, A.V.: Topological function spaces. Mathematics and Its Applications, vol. 78. Kluwer, Dordrecht (1992)Google Scholar
  8. 8.
    Baars, J., de Groot, J., Pelant, J.: Function spaces of completely metrizable spaces. Trans. Am. Math. Soc. 340, 871–883 (1993)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bonet, J., Defant, A.: The Levy-Steinitz rearrangement theorem for duals of metrizable spaces. Isr. J. Math. 117, 131–156 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Buchwalter, H., Schmets, J.: Sur quelques propriétés de l’espace \(C_{s}(T)\). J. Math. Pures Appl. 52, 337–352 (1973)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Cascales, B.: On \(K\)-analytic locally convex spaces. Arch. Math. 49, 232–244 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Cascales, B., Orihuela, J.: On compactness in locally convex spaces. Math. Z. 195, 365–381 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Cascales, B., Ka̧kol, J., Saxon, S.: Weight of precompact subsets and tightness. J. Math. Anal. Appl. 269, 500–518 (2002)Google Scholar
  14. 14.
    Chasco, M.J., Peinador, E., Tarieladze, V.: On Mackey topology for groups. Stud. Math. 132(3), 257–284 (1999)zbMATHGoogle Scholar
  15. 15.
    Christensen, J.P.R.: Topology and Borel structure. North-Holland Mathematics Studies, vol. 10. North-Holland, Amsterdam (1974)Google Scholar
  16. 16.
    De Grande-De Kimpe, N., Ka̧kol, J., Pérez-García, C.: \(p\)-adic locally convex inductive limits. In: Ka̧kol, J., Pérez-García, C., Schikhof, W.H. (eds.) Lectures Notes in Pure and Applied Mathematics. Proceedings of the Fourth Conference in P-adic Analysis, pp. 159–222. Marcel Dekker, New York (1997)Google Scholar
  17. 17.
    De Grande-De Kimpe, N., Ka̧kol, J., Pérez-García, C.: On compactoides in (\(LB\))-spaces. Bull. Acad. Polon. Sci. 45(4), 313–321 (1997)Google Scholar
  18. 18.
    De Grande-De Kimpe, N., Ka̧kol, J., Pérez-García, C., Schikhof, W.: Orthogonal sequences in non-archimedean locally convex spaces. Indag. Math. (N.S.) 11(2), 187–195 (2000)Google Scholar
  19. 19.
    De Grande-De Kimpe, N., Ka̧kol, J., Pérez-García, C., Schikhof, W.: Weak bases in \(p\)-adic spaces. Boll. Unione Mat. Ital. 85-B, 667–676 (2002)Google Scholar
  20. 20.
    Kimpe, De Grande-De: N., Ka̧kol, J., Pérez-García, C., Schikhof, W.: Metrizability of compactoid sets in non archimedean Hausdorff (\(LM\))-spaces. In: Schikhof, W., Perez-Garcia, C., Escassut, A. (eds.) Proceedings of the Ultrametric Functional Analysis (Nijmegen 2002) Contemporary Mathematics, vol. 319. American Mathematical Society, Providence (2003)Google Scholar
  21. 21.
    De Wilde, M., Sunyach, C.: Un théorèm de selection pour des applications à graphe borelién. C. R. Acad. Sci. Paris 269, 273–274 (1969)zbMATHGoogle Scholar
  22. 22.
    Dierolf, S., Ka̧kol, J.: On \(s\)-barrelled spaces. Results Math. 28(1 and 2), 40–48 (1995)Google Scholar
  23. 23.
    Drewnowski, L.: Some characterizations of semi-Fredholm operators. Comment. Math. Prace Mat. 24(2), 215–218 (1984)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Drewnowski, L.: Resolutions of topological linear spaces and continuituy of linear maps. J. Math. Anal. Appl. 335, 1177–1195 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Duren, P.L., Romberg, B.W., Shields, A.L.: Linear functionals on \(H^{p}\) spaces with \(0<p<1\). J. Reine Angew. Math. 238, 32–60 (1969)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Ferrando, J.C., Ka̧kol, J., López-Pellicer, M., Saxon, S.A.: Tightness and distinguished Fréchet spaces. J. Math. Anal. Appl. 324, 862–881 (2006)Google Scholar
  27. 27.
    Ferrando, J.C., Ka̧kol, J., López-Pellicer, M.: A characterization of distinguished Fréchet spaces. Math. Nachr. 279, 1783–1786 (2006)Google Scholar
  28. 28.
    Ferrando, J.C., Ka̧kol, J., López-Pellicer, M.: Necessary and sufficient conditions for precompact sets to be metrizable. Bull. Aust. Math. Soc. 74, 7–13 (2006)Google Scholar
  29. 29.
    Ferrando, J.C., Ka̧kol, J.: A note on spaces \(C_{p}(X)\) \(K\)-analytic-framed in \(\mathbb{R}^{X}\). Bull. Aust. Math. Soc. 78, 141–146 (2008)Google Scholar
  30. 30.
    Ferrando, J.C., Ka̧kol, J., López-Pellicer, M.: A revised closed graph theorem for quasi-Suslin spaces. Czech. Math. J. 59, 1115–1122 (2009)Google Scholar
  31. 31.
    Ferrando, J.C.: A weakly analytic space which is not \(K\)-analytic. Bull. Aust. Math. Soc. 79, 31–35 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Ferrando, J.C., Ka̧kol, J., López-Pellicer, M., Śliwa, W.: Web-compact spaces, Fréchet-Urysohn groups and a Suslin type closed graph theorem. Math. Nachr. 283(5), 704–711 (2010)Google Scholar
  33. 33.
    Ferrando, J.C., Ka̧kol, J.: On locally convex weakly Lindelöf \(\Sigma \)-spaces. Bull. Belg. Math. Soc. Simon Stevin 20(4), 753–763 (2013)Google Scholar
  34. 34.
    Ferrando, J.C., Ka̧kol, J.: On precompact sets in spaces \(C_{c}(X)\). Geogian Math. J. 20(2),  247–254 (2013)Google Scholar
  35. 35.
    Ferrando, J.C., Ka̧kol, J., López-Pellicer, M., Muñoz, M.: Some topological cardinal inequalities for spaces \(Cp(X)\). Topology Appl. 160(10), 1102–1107 (2013)Google Scholar
  36. 36.
    Fremlin, D.H.: \(K\)-analytic spaces with metrizable compacts. Mathematika 24, 257–261 (1977)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Garling, D.J.H.: A generalized form of inductive-limit topology for vector spaces. Proc. Lond. Math. Soc. 3(14), 1–28 (1964)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Gabriyelyan, S.S., Ka̧kol, J., Leiderman, A.: The strong Pytkeev property for topological groups and topological vector spaces. (Preprint)Google Scholar
  39. 39.
    Granado, M., Gruenhage, G.F.: Baireness of \(C_{c}(X)\) for ordered \(X\). Comm. Math. Univ. Carolin. 47(1), 103–111 (2006)zbMATHMathSciNetGoogle Scholar
  40. 40.
    Granero, S., Hájek, P., Montesinos Santalucía, V.: Convexity and \(\omega ^{\ast }\)-compactness in Banach spaces. Math. Ann. 328, 625–631 (2004)Google Scholar
  41. 41.
    Granero, A.S.: An extension of the Krein-Smulian theorem. Rev. Mat. Iberoam. 22, 93–110 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Gruenhage, G.F., Ma, D.K.: Baireness of \(C_{k}(X)\) for locally compact \(X\). Topology Appl. 80 (1–2), 131–139 (1997)Google Scholar
  43. 43.
    Jarchow, H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981)CrossRefzbMATHGoogle Scholar
  44. 44.
    Ka̧kol, J.: Note on compatible vector topologies. Proc. Am. Math. Soc. 99(4), 690–692 (1987)Google Scholar
  45. 45.
    Ka̧kol, J.: Compatible vector topologies and quotients of \(F\)-spaces. In: Function spaces (Poznań 1986), pp. 164–169. Teubner-Texte Mathematik, vol. 103. Teubner, Leipzig (1988)Google Scholar
  46. 46.
    Ka̧kol, J.: Note on semi-Fredholm and strictly singular operators acting between \(F\)-spaces. Math. Nachr. 143, 69–74 (1989)Google Scholar
  47. 47.
    Ka̧kol, J.: Simple construction of spaces without the Hanh-Banach extension property. Comm. Math. Univ. Carolinae. 33(4), 623–624 (1992)Google Scholar
  48. 48.
    Ka̧kol, J., Śliwa, W.: On the weak topology of Banach spaces over non-archimedian fields. Topology Appl. 158, 1131–1135 (2011)Google Scholar
  49. 49.
    Ka̧kol, J., Pérez-García, C., Śliwa, W.: Non-archimedean function spaces and the Lebesgue dominated convergence theorem. Bull. Belg. Math. Soc. Simon Stevin 19(1), 173–184 (2012)Google Scholar
  50. 50.
    Ka̧kol, J., Śliwa, W.: Descriptive topology in non-archimedean function spaces, part 1. Bull. Lond. Math. Soc. 44(5), 899–912 (2012)Google Scholar
  51. 51.
    Ka̧kol, J., Kubzdela, A.J.: Non-archimedean quantitative Grothendieck and Krein’s theorems. Convex Anal. 20, 233–242 (2013)Google Scholar
  52. 52.
    Ka̧kol, J., Kubzdela, A., Śliwa, W.: A non-archimedean Dugundji extension theorem. Czech. Math. J. 63, 157–164 (2013)Google Scholar
  53. 53.
    Ka̧kol, J., Roelcke, W.: Unordered Baire-like spaces without local convexity. Collect. Math. 43(1), 43–53 (1992)Google Scholar
  54. 54.
    Ka̧kol, J., Roelcke, W.: Topological vector spaces with some Baire-type properties. Note di Mat. (special sigue to memory of Prof. Köthe) 12, 77–92 (1992)Google Scholar
  55. 55.
    Kąkol, J., Roelcke, W.: On the barrelledness of \(l^{p}\)-direct sums of seminormed spaces for \(1\leqslant p\leqslant \infty \). Arch. Math. 36(4), 331–334 (1994)CrossRefGoogle Scholar
  56. 56.
    Ka̧kol, J., Sorjonen, P.: Basic sequences and the Hahn-Banach extension property. Acta Sci. Math. (Szeged), 59(1–2), 161–171 (1994)Google Scholar
  57. 57.
    Ka̧kol, J.: Strongly Lindelöf spaces, Baire-type property and sequential closure conditions for inductive limits of metrizable spaces. In: Dierolf, S., Dineen, S., Domanski, P. (eds.) Functional Analysis, pp. 227–239. Walter de Gruyter, Berlin (1996)Google Scholar
  58. 58.
    Ka̧kol, J., Sánchez Ruiz, L.: A note on the Baire and the ultrabornological property of spaces \(C_{p}(X, E)\). Arch. Math. (Basel) 67, 493–499 (1996)Google Scholar
  59. 59.
    Ka̧kol, J.: Report on the book J. C. Ferrando, M. López-Pellicer, L. M. Sanchez-Ruiz, Metrizable barrelled spaces. Pitman Research Notes in Mathematics Series, vol. 332. Longman, New York. Bull. Am. Math. Soc. 34, 101–105 (1997)Google Scholar
  60. 60.
    Ka̧kol, J., Gildsdorf, T.E.: On the weak bases theorems for \(p\)-adic locally convex spaces. In: De Grande-de Kimpe, N., Ka̧kol, J., Pérez-García, C. (eds.) Proceedings of the Fifth Conference in P-adic Analysis (Poznan 1998), pp. 149–167. Lectures Notes in Pure and Applied Mathematics, vol. 192. Marcel Dekker, New York (1999)Google Scholar
  61. 61.
    Ka̧kol, J., Gildsdorf, T., Sánchez Ruiz, L.: Baire-likeness of spaces \(\ell _{\infty }(E)\) and \(c_{0}(E)\). Period. Math. Hungar. 40, 31–35 (2000)Google Scholar
  62. 62.
    Ka̧kol, J., Śliwa, W.: Strongly Hewitt spaces. Topology Appl. 119, 219–227 (2002)Google Scholar
  63. 63.
    Ka̧kol, J., Saxon, S.A.: Montel \((DF)\)-spaces, sequential \((LM)\)-spaces and the strongest locally convex topology. J. Lond. Math. Soc. 66(2), 388–406 (2002)Google Scholar
  64. 64.
    Ka̧kol, J., Saxon, S.A.: Metrizability versus Fréchet-Urysohn property. Proc. Am. Math. Soc. 131(11), 3623–3631 (2003)Google Scholar
  65. 65.
    Ka̧kol, J., Saxon, S.A., Todd, A.R.: Pseudocompact spaces \(X\) and \((df)\)-spaces \(C_{c}(X)\). Proc. Am. Math. Soc. 132(6), 1703–1712 (2004)Google Scholar
  66. 66.
    Ka̧kol, J., López-Pellicer, M.: Compact coverings for Baire locally convex spaces. Math. Anal. Appl. 332, 965–974 (2007)Google Scholar
  67. 67.
    Ka̧kol, J., López-Pellicer, M., Śliwa, W.: Weakly \(K\)-analytic spaces and the three-space property for analyticity. J. Math. Anal. Appl. 362, 90–99 (2010)Google Scholar
  68. 68.
    Ka̧kol, J., Kubiś, W., López-Pellicer, M.: Descriptive Topology in Selected Topics of Functional Analysis. Developments in Mathematics, vol. 24. Springer, New York (2011)Google Scholar
  69. 69.
    Ka̧kol, J., López-Pellicer, M., Okunev, O.J.: Compact covers and functions spaces. Math. Anal. Appl. 411, 372–380 (2014)Google Scholar
  70. 70.
    Kalton, N.J.: Basic sequences in \(F\)-spaces and their applications. Proc. Edinb. Math. Soc. 19(2), 151–167 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  71. 71.
    Kalton, N.J.: Basic sequence problem. Stud. Math. 116(2), 167–187 (1995)zbMATHMathSciNetGoogle Scholar
  72. 72.
    Khan, L.A.: Linear Topological Spaces of Continuous Vector-Valued Functions. Academic, London (2013)Google Scholar
  73. 73.
    Lurje, P.: Tonneliertheit in lokalkonvexen Vektorgruppen. Manuscripta Math. 14, 107–121 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  74. 74.
    Lurje, P.: Vollständige und B-vollständige topologische Vektorgruppen. Graphensätze und open-mapping theorems. Manuscripta Math. 15, 109–137 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  75. 75.
    Lutzer, D.J., McCoy, R.A.: Category in function spaces. I. Pac. J. Math. 90(1), 145–168 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  76. 76.
    Lutzer, D.J., van Mill, J., Pol, R.: Descriptive complexity of function spaces. Trans. Am. Math. Soc. 291, 121–128 (1985)CrossRefzbMATHGoogle Scholar
  77. 77.
    McCoy, R.A., Todd, A.R.: Support spaces and \(P(K)\)-points in the Stone-Čech compactification of integers. Southeast Asian Bull. Math. 20(1), 11–18 (1996)zbMATHMathSciNetGoogle Scholar
  78. 78.
    Mazón, J.M.: On the \(df\)-spaces of continuous functions. Bull. Soc. Roy. Sci. Liège 53, 225–232 (1984)zbMATHGoogle Scholar
  79. 79.
    Mendoza, J.: Necessary and sufficient conditions for \(C(X;E)\) to be barrelled or infrabarrelled. Simon Stevin 57(1–2), 103–123 (1983)zbMATHMathSciNetGoogle Scholar
  80. 80.
    Michael, E.A.: Locally \(M\)-convex algebras. Thesis (Ph.D.), The University of Chicago (1951)Google Scholar
  81. 81.
    Michael, E.A.: Locally multiplicatively-convex topological algebras. Am. Math. Soc. 11 (1952)Google Scholar
  82. 82.
    Novák, J.: On the cartesian product of two compact spaces. Fundam. Math. 40, 106–112 (1953)zbMATHGoogle Scholar
  83. 83.
    Nyikos, P.: Metrizability and the Fréchet-Urysohn property in topological groups. Proc. Am. Math. Soc. 83, 793–801 (1981)zbMATHMathSciNetGoogle Scholar
  84. 84.
    Orihuela, J.: Pointwise compactness in spaces of continuous functions. J. Lond. Math. Soc. 36, 143–152 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  85. 85.
    Pérez García, C., Schikhof, W.H.: Locally convex spaces over non-archimedean valued fields. Cambridge Studies in Advanced Mathematics, vol. 119. Cambridge University Press, Cambridge (2010)Google Scholar
  86. 86.
    Pytkeev, E.G.: The Baire property of spaces of continuous functions. Mat. Zametki 38(5), 726–740, 797 (1985)Google Scholar
  87. 87.
    Saxon, S.A.: Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology. Math. Ann. 197, 87–106 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  88. 88.
    Schmets, J.: Spaces of Vector-Valued Continuous Functions. Lecture Notes in Mathematics, vol. 1003. Springer, Berlin (1983)Google Scholar
  89. 89.
    Shapiro, J.H.: Extension of linear functionals on \(F\)-spaces with bases. Duke Math. J. 37, 639–645 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  90. 90.
    Talagrand, M.: Espaces de Banach faiblement \(K\)-analytiques. Ann. Math. 110, 407–438 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  91. 91.
    Tsaban, B., Zdomskyy, L.: On the Pytkeev property in spaces of continuous functions (II). Houston J. Math. 35, 563–571 (2009)zbMATHMathSciNetGoogle Scholar
  92. 92.
    Tkachuk, V.V., Shakhmatov, D.B.: When is space \(C_{p}(X)\) \(\sigma \)-countably compact? Mosc. Univ. Math. Bull. 42, 23–27 (1987)zbMATHGoogle Scholar
  93. 93.
    Tkachuk, V.V.: A space \(C_{p}(X)\) is dominated by irrationals if and only if it is K-analytic. Acta Math. Hung. 107, 253–265 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  94. 94.
    Valdivia, M.: Topics in Locally Convex Spaces. North-Holland Mathematics Studies, vol. 67. North-Holland, Amsterdam (1982)Google Scholar
  95. 95.
    Valdivia, M.: Quasi-LB-spaces. J. Lond. Math. Soc. 35, 149–168 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  96. 96.
    Valov, V.: Function spaces. Topology Appl. 81, 1–22 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  97. 97.
    Warner, S., Blair, A.: On symmetry in convex topological vector spaces. Proc. Am. Math. Soc. 6, 301–304 (1955)CrossRefzbMATHMathSciNetGoogle Scholar
  98. 98.
    Warner, S.: Weak locally multiplicatively-convex algebras. Pac. J. Math. 5, 1025–1032 (1955)CrossRefzbMATHMathSciNetGoogle Scholar
  99. 99.
    Webb, J.H.: Sequential convergence in locally convex spaces. Proc. Camb. Philos. Soc. 64, 341–364 (1968)CrossRefzbMATHGoogle Scholar
  100. 100.
    Yoshinaga, K.: On a locally convex space introduced by J. S. e Silva. J. Sci. Hiroshima Univ. Ser. A-I Math. 21, 89–98 (1957)Google Scholar

List of Kakol Publications in MathSciNet

  1. MR3118492 K a̧ kol, J., López-Pellicer, M., Okunev, O.: Compact covers and function spaces. J. Math. Anal. Appl. 411(1), 372–380 (2014) (54Cxx)Google Scholar
  2. MR3129072 Ferrando, J.C., K a̧ kol, J.: On locally convex weakly Lindelöf \(\varSigma \)-spaces. Bull. Belg. Math. Soc. Simon Stevin 20(4), 753–763 (2013) (54D20) (46Axx)Google Scholar
  3. MR3073666 Angosto, C., K a̧ kol, J., Kubzdela, A., López-Pellicer, M.: A quantitative version of Krein’s theorems for Fréchet spaces. Arch. Math. (Basel) 101(1), 65–77 (2013) (46A50) (54C35)Google Scholar
  4. MR3086450 K a̧ kol, J., Kubzdela, A.: Non-archimedean quantitative Grothendieck and Krein’s theorems. J. Convex Anal. 20(1), 233–242 (2013) (46S10)Google Scholar
  5. MR3063343 Ferrando, J.C., K a̧ kol, J.: On precompact sets in spaces \(C_{c}(X)\). Georgian Math. J. 20(2), 247–254 (2013) (54D35)Google Scholar
  6. MR3056000 Ferrando, J.C., K a̧ kol, J., López-Pellicer, M., Muñoz, M.: Some topological cardinal inequalities for spaces \(C_{p}(X)\). Topology Appl. 160(10), 1102–1107 (2013) (54A25) (54C35)Google Scholar
  7. MR3035503 Kąkol, J., Kubzdela, A., Śliwa, W.: A non-archimedean Dugundji extension theorem. Czech. Math. J. 63(138), no. 1, 157–164 (2013) (46S10) (54C35)Google Scholar
  8. MR3035068 Angosto, C., K a̧ kol, J., López-Pellicer, M.: A quantitative approach to weak compactness in Fréchet spaces and spaces \(C(X)\). J. Math. Anal. Appl. 403(1), 13–22 (2013) (46A50) (46E15)Google Scholar
  9. MR2975150 K a̧ kol, J., Śliwa, W.: Descriptive topology in non-archimedean function spaces \(C_{p}(X, K)\). Part I. Bull. Lond. Math. Soc. 44(5), 899–912 (2012) (46S10) (46A50 46E10 54C35 54H05)Google Scholar
  10. MR2952804 K a̧ kol, J., Perez-Garcia, C., Śliwa, W.: Non-archimedean function spaces and the Lebesgue dominated convergence theorem. Bull. Belg. Math. Soc. Simon Stevin 19(1), 173–184 (2012) (46S10) (54C35)Google Scholar
  11. MR2862316 K a̧ kol, J., López-Pellicer, M.: Note about Lindelöf \(\varSigma \)-spaces \(\upsilon X\). Bull. Aust. Math. Soc. 85(1), 114–120 (2012) (54H05) (28A05 46A50)Google Scholar
  12. MR2953769 Kąkol, J., Kubiś, W., López-Pellicer, M.: Descriptive topology in selected topics of functional analysis. Developments in Mathematics, vol. 24. Springer, New York (2011) (xii+493 pp. 46–02, ISBN: 978-1-4614-0528-3) (54-02)Google Scholar
  13. MR2841188 Ferrer, J., Kąkol, J., López-Pellicer, M., Wójtowicz, M.: On a three-space property for Lindelöf \(\varSigma \)-spaces, (\(WCG\))-spaces and the Sobczyk property. Funct. Approx. Comment. Math. 44(2), 289–306 (2011) (46A30) (46A03)Google Scholar
  14. MR2794468 K a̧ kol, J., Śliwa, W.: On the weak topology of Banach spaces over non-archimedean fields. Topology Appl. 158(9), 1131–1135 (2011) (46S10) (46B26 54C35)Google Scholar
  15. MR2783795 K a̧ kol, J., López-Pellicer, M.: On realcompact topological vector spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 105(1), 39–70 (2011) (46A04) (46A50 54H05)Google Scholar
  16. MR2666299 Ferrando, J.C., K a̧ kol, J., López-Pellicer, M., Śliwa, W.: Web-compact spaces, Fréchet-Urysohn groups and a Suslin closed graph theorem. Math. Nachr. 283(5), 704–711 (2010) (46A30) (46A08)Google Scholar
  17. MR2557670 K a̧ kol, J., López-Pellicer, M., Śliwa, W.: Weakly K-analytic spaces and the three-space property for analyticity. J. Math. Anal. Appl. 362(1), 90–99 (2010) (46A50) (46A20)Google Scholar
  18. MR2563582 Ferrando, J.C., Kąkol, J., Lopez-Pellicer, M.: A revised closed graph theorem for quasi-Suslin spaces. Czech. Math. J. 59(134), no. 4, 1115–1122 (2009) (46A30) (54C05 54D10)Google Scholar
  19. MR2541044 K a̧ kol, J., López-Pellicer, M., Todd, A.R.: A topological vector space is Fréchet-Urysohn if and only if it has bounded tightness. Bull. Belg. Math. Soc. Simon Stevin 16(2), 313–317 (2009) (46A50) (46A30 54C35)Google Scholar
  20. MR2535274 K a̧ kol, J., López-Pellicer, M.: About an example of a Banach space not weakly \(K\)-analytic. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 103(1), 87–90 (2009) (46B99) (46A03 46E15 54C30 54H05)Google Scholar
  21. MR2667152 K a̧ kol, J., Martín-Peinador, E., Moll, S.: A characterization of K-analyticity of groups of continuous homomorphisms. Bol. Soc. Mat. Mexicana (3) 14(1), 15–19 (2008) (22B05) (54H11)Google Scholar
  22. MR2546832 K a̧ kol, J., Śliwa, W.: On metrizability of compactoid sets in non-archimedean locally convex spaces. Indag. Math. (N.S.) 19(4), 563–578 (2008) (46S10) (46A13)Google Scholar
  23. MR2458306 Ferrando, J.C., Kąkol, J.: A note on spaces \(C_{p}(X)\) \(K\)-analytic-framed in \(R^{X}\). Bull. Aust. Math. Soc. 78(1), 141–146 (2008) (54C35) (46B99 46E15 54H05)Google Scholar
  24. MR2394919 K a̧ kol, J., López-Pellicer, M., Martín-Peinador, E., Tarieladze, V.: Lindelöf spaces \(C(X)\) over topological groups. Forum Math. 20(2), 201–212 (2008) (54H11) (46E10 54C35)Google Scholar
  25. MR2377082 Ferrando, J.C., K a̧ kol, J., López-Pellicer, M., Saxon, S.A.: Quasi-Suslin weak duals. J. Math. Anal. Appl. 339(2), 1253--1263 (2008) (46A20) (46A03 46A08)Google Scholar
  26. MR2667463 K a̧ kol, J., López-Pellicer, M.: A note on Fréchet-Urysohn locally convex spaces. RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 101(2), 127–131 (2007) (46A03) (46A04 54E40)Google Scholar
  27. MR2387046 Ferrando, J.C., K a̧ kol, J., López-Pellicer, M.: A characterization of trans-separable spaces. Bull. Belg. Math. Soc. Simon Stevin 14(3), 493–498 (2007) (54E15) (46A50 54C35)Google Scholar
  28. MR2324313 K a̧ kol, J., López-Pellicer, M.: Compact coverings for Baire locally convex spaces. J. Math. Anal. Appl. 332(2), 965–974 (2007) (46A04) (54C35)Google Scholar
  29. MR2274833 Ferrando, J.C., K a̧ kol, J., López-Pellicer, M.: A characterization of distinguished Fréchet spaces. Math. Nachr. 279(16), 1783–1786 (2006) (46A04) (46A30 54C35)Google Scholar
  30. MR2265087 Ferrando, J.C., Kąkol, J., López-Pellicer, M., Saxon, S.A.: Tightness and distinguished Fréchet spaces. J. Math. Anal. Appl. 324(2), 862–881 (2006) 46A04 (46A03 46A08 46E10)Google Scholar
  31. MR2248802 Ferrando, J.C., Kąkol, J., López-Pellicer, M.: Necessary and sufficient conditions for precompact sets to be metrisable. Bull. Aust. Math. Soc. 74(1), 7–13 (2006) (46A50) (54C35)Google Scholar
  32. MR2216100 Ferrando, J.C., K a̧ kol, J., López-Pellicer, M.: Metrizability of precompact sets: an elementary proof. RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 99(2), 183–185 (2005) (46A50) (46A03)Google Scholar
  33. MR2097264 Kąkol, J., Saxon, S.A., Todd, A.R.: The analysis of Warner boundedness. Proc. Edinb. Math. Soc. (2) 47(3), 625–631 (2004) (46A08) (46A30 46E10)Google Scholar
  34. MR2088677 Ferrando, J.C., Kąkol, J., López-Pellicer, M.: Bounded tightness for locally convex spaces and spaces \(C(X)\). Special issue dedicated to John Horváth. J. Math. Anal. Appl. 297(2), 518–526 (2004) (Reviewer: Matias Raja) (46A03) (46E10 54F65)Google Scholar
  35. MR2088675 Kąkol, J., Saxon, S.A., Todd, A.R.: Weak barrelledness for \(C(X)\) spaces. Special issue dedicated to John Horváth. J. Math. Anal. Appl. 297(2), 495–505 (2004) (46E10) (46A08)Google Scholar
  36. MR2088033 K a̧ kol, J., López-Pellicer, M., Moll, S.: Banach disks and barrelledness properties of metrizable \(c_{0}( \varOmega , X)\). Mediterr. J. Math. 1(1), 81–91 (2004) (46A08) (46B25 46E40)Google Scholar
  37. MR2059181 Ferrando, J.C., K a̧ kol, J., López-Pellicer, M.: On a problem of Horváth concerning barrelled spaces of vector valued continuous functions vanishing at infinity. Bull. Belg. Math. Soc. Simon Stevin 11(1), 127–132 (2004) (46E40) (46A08 46B25)Google Scholar
  38. MR2051131 Kąkol, J., Saxon, S.A., Todd, A.R.: Pseudocompact spaces \(X\) and \(df\)-spaces \(C_{c}(X) \). Proc. Am. Math. Soc. 132(6), 1703–1712 (2004) (46A08) (46E10 54C35)Google Scholar
  39. MR2040017 K a̧ kol, J., Saxon, S.A., Todd, A.R.: Docile locally convex spaces. Topological algebras and their applications, pp. 73–78. Contemporary Mathematics, vol. 341. American Mathematical Society, Providence (2004) (46A03) (03E10 46A08 46E10 54C35)Google Scholar
  40. MR1997755 Kąkol, J., Saxon, S.A.: The Fréchet-Urysohn property, (\(LM\))-spaces and the strongest locally convex topology. Math. Proc. R. Ir. Acad. 103A(1), 1–8 (2003) (46A03)Google Scholar
  41. MR1991777 Cascales, B., K a̧ kol, J., Saxon, S.A.: Metrizability versus Fréchet-Urysohn property. Proc. Am. Math. Soc. 131(11), 3623–3631 (2003) (electronic) (54D10) (46A50 54E15 54E35)Google Scholar
  42. MR1977440 De Grande-De Kimpe, N., K a̧ kol, J., Perez-Garcia, C.: Metrizability of compactoid sets in non-archimedean Hausdorff (\(LM\))-spaces. Ultrametric functional analysis (Nijmegen 2002), pp. 99–107. Contemporary Mathematics, vol. 319. American Mathematical Society, Providence (2003) (46S10) (46A13)Google Scholar
  43. MR1972199 Kąkol, J., López-Pellicer, M.: On countable bounded tightness for spaces \(C_{p}(X)\). J. Math. Anal. Appl. 280(1), 155–162 (2003) (54C35)Google Scholar
  44. MR2232643 K a̧ kol, J., Tweddle, I.: Spaces of continuous functions \(C_{p}(X, E)\) as \((LM)\)-spaces. Bull. Belg. Math. Soc. Simon Stevin 9(Suppl.) 109–116, (2002) (46A13) (46A16 46E40)Google Scholar
  45. MR2232642 K a̧ kol, J., Saxon, S.A.: The Fréchet-Urysohn view of weak and \(s\)-barrelledness. Bull. Belg. Math. Soc. Simon Stevin 9(Suppl.) 101–108, (2002) (46A30) (46A08 54C35)Google Scholar
  46. MR1934373 De Grande-De Kimpe, N., K a̧ kol, J., Perez-Garcia, C., Schikhof, W.H.: Weak bases in \(p\)-adic spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5(3), 667–676 (2002) (46S10) (46A35)Google Scholar
  47. MR1920410 Kąkol, J., Saxon, S.A.: Montel (\(DF\))-spaces, sequential (\(LM\))-spaces and the strongest locally convex topology. J. Lond. Math. Soc. (2) 66(2), 388–406 (2002) (46A50) (46A04 46A08 46A11 46A13)Google Scholar
  48. MR1907128 Cascales, B., K a̧ kol, J., Saxon, S.A.: Weight of precompact subsets and tightness. J. Math. Anal. Appl. 269(2), 500–518 (2002) (54A25) (46A04 54C60)Google Scholar
  49. MR1886096 Kąkol, J.: Śliwa, Wiesław Strongly Hewitt spaces. Topology Appl. 119(2), 219–227 (2002) (54C35) (46E40)Google Scholar
  50. MR1838285 De Grande-De Kimpe, N., K a̧ kol, J., Perez-Garcia, C., Schikhof, W.H.: Orthogonal and Schauder bases in non-archimedean locally convex spaces. \(P\)-adic functional analysis (Ioannina 2000), pp. 103–126. Lecture Notes in Pure and Applied Mathematics, vol. 222. Dekker, New York (2001) (46A35) (46S10)Google Scholar
  51. MR1912762 Kąkol, J.: Remarks on linear homeomorphisms of function spaces. Acta Math. Hung. 89(4), 315–319 (2000) (46E10) (54C35)Google Scholar
  52. MR1822118 Kąkol, J.: Baire-like spaces \(C(X, E)\). Rev. Mat. Complut. 13(2), 341–347 (2000) (46E40) (46A45)Google Scholar
  53. MR1813159 De Grande-De Kimpe, N., K a̧ kol, J., Perez-Garcia, C., Schikhof, W.: Orthogonal sequences in non-archimedean locally convex spaces. Indag. Math. (N.S.) 11(2), 187–195 (2000) (46S10) (46A35)Google Scholar
  54. MR1772130 Kąkol, J.: Baire property and related concepts for spaces \(C(X, E)\). Function spaces (Poznań 1998), pp. 255–268. Lecture Notes in Pure and Applied Mathematics, vol. 213. Dekker, New York (2000) (46E40) (46A08 46E10 54C35)Google Scholar
  55. MR1774932 Kąkol, J., Gilsdorf, T., Sánchez Ruiz, L.: Baire-likeness of spaces \(l_{\infty }(E)\) and \(c_{0}(E)\). Period. Math. Hung. 40(1), 31–35 (2000) (46A08) (54E52)Google Scholar
  56. MR1773194 Kąkol, J., Saxon, S.A.: The semi-Baire-like three-space problems. Adv. Appl. Math. 25(1), 57–64 (2000) (46A08)Google Scholar
  57. MR1702053 Kąkol, J., Gilsdorf, T.: On the weak bases theorems for \(p\)-adic locally convex spaces. \(P\)-adic functional analysis (Poznań 1998), pp. 149–165. Lecture Notes in Pure and Applied Mathematics, vol. 207. Dekker, New York (1999) (46S10) (46A35)Google Scholar
  58. MR1668786 K a̧ kol, J.: Baire-Type Properties of Spaces of Continuous Functions. Functional Analysis, pp. 9–22. Narosa, New Delhi (1998) (46E10) (46A03 46E40)Google Scholar
  59. MR1602398 Kąkol, J., Perez-Garcia, C., Śliwa, W.: Remarks on quasi-Banach spaces over valued fields. Dedicated to Roman Taberski on the occasion of his 70th birthday. Funct. Approx. Comment. Math. 25, 173–179 (1997) (46S10) (46A20 46A22)Google Scholar
  60. MR1489873 De Grande-De Kimpe, N., Kąkol, J., Pérez-Garcia, C.: On compactoids in \((LB)\)-spaces. Bull. Polish Acad. Sci. Math. 45(4), 313–321 (1997) (46S10) (46A13)Google Scholar
  61. MR1459211 De Grande-De Kimpe, N., K a̧ kol, J., Perez-Garcia, C., Schikhof, W.H.: \(P\)-adic locally convex inductive limits. \(P\)-adic functional analysis (Nijmegen 1996), pp. 159–222. Lecture Notes in Pure and Applied Mathematics, vol. 192. Dekker, New York (1997) (46S10) (46A13)Google Scholar
  62. MR1459210 Gilsdorf, T.E., K a̧ kol, J.: On some non-archimedean closed graph theorems. \(P\)-adic functional analysis (Nijmegen 1996), pp. 153–158. Lecture Notes in Pure and Applied Mathematics, vol. 192. Dekker, New York (1997) (46S10) (46A30)Google Scholar
  63. MR1440245 Kąkol, J.: On Baire-like spaces of spaces of continuous vector-valued functions. Acta Math. Hung. 74(3), 203–209 (1997) (46E40) (46A08)Google Scholar
  64. MR1420451 Kąkol, J.: Strongly Lindelöf spaces, Baire-type property and sequential closure conditions for inductive limits of metrizable spaces. Functional Analysis (Trier 1994), pp. 227–239. de Gruyter, Berlin (1996) (46A13)Google Scholar
  65. MR1418911 Kąkol, J., Sánchez Ruiz, L.: A note on the Baire and ultrabornological property of spaces \(C_{p}(X, E)\). Arch. Math. (Basel) 67(6), 493–499 (1996) (46E40) (46A08 46E10)Google Scholar
  66. MR1416418 Kąkol, J., Perez-Garcia, C., Schikhof, W.: Cardinality and Mackey topologies of non-archimedean Banach and Fréchet spaces. Bull. Polish Acad. Sci. Math. 44(2), 131–141 (1996) (46S10) (46A03)Google Scholar
  67. MR1357524 Kąkol, J.: Remarks on bounded sets in \((LF)\) topological vectors spaces. Comm. Math. Univ. Carolin. 36(2), 239–244 (1995) (46A16) (46A13)Google Scholar
  68. MR1345353 Dierolf, S., Kąkol, J.: On \(S\)-barrelled spaces. Results Math. 28(1–2), 40–48 (1995) (46A08) (46E10)Google Scholar
  69. MR1342811 Kąkol, J.: The Mackey-Arens and Hahn-Banach theorems for spaces over valued fields. In: Proceedings of the 3rd International Conference on p-adic Functional Analysis (Aubière 1994). Ann. Math. Blaise Pascal 2(1), 147–153 (1995) (46S10) (46A03)Google Scholar
  70. MR1810694 Indexed Kąkol, J.: The Mackey-Arens property for spaces over valued fields. Bull. Polish Acad. Sci. Math. 42(2), 97–101 (1994) (46S10) (46A32 46B28)Google Scholar
  71. MR1626419 Abul-Ez, M., K a̧ kol, J.: Mode of increase of power similar sets of polynomials. Bull. Fac. Sci. Assiut Univ. C 23(2), 55–65 (1994) (30C10) (30A10 30D15)Google Scholar
  72. MR1457218 Kąkol, J.: A strong barrelledness property for spaces \(C(X, E)\). Note Mat. 14(2), 199–202 (1994, 1997) (46E40) (46A08)Google Scholar
  73. MR1336293 Kąkol, J., Śliwa, W., Wójtowicz, M.: \(CS\)-barrelled spaces. Collect. Math. 45(3), 271–276 (1994) (46A08)Google Scholar
  74. MR1313172 Kąkol, J.: The weak and strong convergence in metrizable spaces over valued fields. Portugal. Math. 51(4), 613–615 (1994) (46S10) (46A35)Google Scholar
  75. MR1311875 Kąkol, J.: Hahn-Banach extension property for Banach spaces over non-archimedean fields. Period. Math. Hung. 29(2), 159–162 (1994) (46S10) (46A22 46B20)Google Scholar
  76. MR1298778 Kąkol, J.: Remarks on spherical completeness of non-archimedean valued fields. Indag. Math. (N.S.) 5(3), 321–323 (1994) (46S10) (12J25)Google Scholar
  77. MR1285437 Kąkol, J., Sorjonen, P.: Basic sequences and the Hahn-Banach extension property. Acta Sci. Math. (Szeged) 59(1–2), 161–171 (1994) (46A16) (46A03 46A35)Google Scholar
  78. MR1264704 Kąkol, J., Roelcke, W.: On the barrelledness of \(l^{p}\)-direct sums of seminormed spaces for \(1\le p\le \infty \). Arch. Math. (Basel) 62(4), 331–334 (1994) (46A08) (46A13 46A16)Google Scholar
  79. MR1366717 Abul-Ez, M.A., K a̧ kol, J.: Mode of increase of power similar set of polynomials. Carib. J. Math. Comput. Sci. 3(1–2), 27–33 (1993) (30E10) (30D15 41A10)Google Scholar
  80. MR1324070 Kąkol, J., Śliwa, W.: Remarks concerning the separable quotient problem. Note Mat. 13(2), 277–282 (1993) (46A16)Google Scholar
  81. MR1314928 Kąkol, J.: The weak bases theorem for \(K\)-Banach spaces. Bull. Soc. Math. Belg. Sér. B 45(1), 1–4 (1993) (46S10) (46B15)Google Scholar
  82. MR1283356 Kąkol, J.: Remarks on regular \((LF)\)-spaces. Rend. Circ. Mat. Palermo (2) 42(3), 453–458 (1993, 1994) (46A13) (46A16 46A35)Google Scholar
  83. MR1240205 Kąkol, J.: A note on a theorem of Klee. Comm. Math. Univ. Carolin. 34(1), 79–80 (1993) (46A20) (46B10)Google Scholar
  84. MR1201642 Kąkol, J.: Sequential closure conditions and Baire-like spaces. Arch. Math. (Basel) 60(3), 277–282 (1993) (46A08)Google Scholar
  85. MR1258565 Kąkol, J., Roelcke, W.: Topological vector spaces with some Baire-type properties. Dedicated to the memory of Professor Gottfried Köthe. Note Mat. 12, 77–92 (1992) (46A08) (46A03 46A30)Google Scholar
  86. MR1240183 Kąkol, J.: Simple construction of spaces without the Hahn-Banach extension property. Comm. Math. Univ. Carolin. 33(4), 623–624 (1992) (46A22)Google Scholar
  87. MR1233048 Kąkol, J.: Sequentially barrelled spaces and the strongest locally convex topology. Math. Nachr. 157, 77–80 (1992) (46A08)Google Scholar
  88. MR1214222 Kąkol, J., Roelcke, W.: Unordered Baire-like spaces without local convexity. Collect. Math. 43(1), 43–53 (1992) (46A16)Google Scholar
  89. MR1118287 Kąkol, J., Sorjonen, P.: Locally convex topologies in linear orthogonality spaces. Comm. Math. Univ. Carolin. 32(1), 33–37 (1991) (46A16) (46C99)Google Scholar
  90. MR1094425 Kąkol, J.: Remarks and examples concerning the weak basis theorem. Arch. Math. (Basel) 56(4), 376–379 (1991) (46A35) (46A04)Google Scholar
  91. MR1165080 Kąkol, J.: Ultrabarrelled spaces and dense vector subspaces. Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid 84(3), 435–440 (1990) (46A16)Google Scholar
  92. MR1149649 Kąkol, J.: The Mackey-Arens theorem for non-locally convex spaces. Collect. Math. 41(2), 129–132 (1990, 1991) (46A16)Google Scholar
  93. MR1100776 Kąkol, J.: On some dense compact operator range subspaces in separable Fréchet spaces. Acta Math. Hung. 56(1–2), 53–55 (1990) (46A04) (47A05)Google Scholar
  94. MR1022750 Kąkol, J.: On the weak basis theorem. Bull. Soc. Math. Belg. Sér. B 41(2), 247–260 (1989) (46A35)Google Scholar
  95. MR1018233 Kąkol, J.: Note on semi-Fredholm and strictly singular operators acting between \(F\)-spaces. Math. Nachr. 143, 69–74 (1989) (47A53) (47A55)Google Scholar
  96. MR1066531 Kąkol, J.: Compatible vector topologies and quotients of \(F\)-spaces. Function spaces (Poznań 1986), pp. 164–169. Teubner-Texte Mathematics, vol. 103. Teubner, Leipzig (1988) (46A16) (46A20)Google Scholar
  97. MR0962609 Kąkol, J.: On the cardinal number of some families of separable topological vector spaces. Rev. Roumaine Math. Pures Appl. 33(7), 595–599 (1988) (46A06)Google Scholar
  98. MR0944650 Kąkol, J.: Basic sequences and nonlocally convex topological vector spaces. Rend. Circ. Mat. Palermo (2) 36(1), 95–102 (1987) (46A15) (46A06)Google Scholar
  99. MR0937732 Kąkol, J.: On some dense dual-separating subspaces in \(F\)-spaces. Bull. Polish Acad. Sci. Math. 35(9–10), 557–560 (1987) (46A15) (46B20)Google Scholar
  100. MR0877041 Kąkol, J.: Note on compatible vector topologies. Proc. Am. Math. Soc. 99(4), 690–692 (1987) (46A15)Google Scholar
  101. MR0880146 Kąkol, J.: A note on dense subspaces in separable Fréchet spaces. Funct. Approx. Comment. Math. 15, 167–170 (1986) (46A07) (46A06)Google Scholar
  102. MR0874887 Kąkol, J.: A note on dual-separating F-spaces. Bull. Polish Acad. Sci. Math. 34(7–8), 423–426 (1986) (46A06)Google Scholar
  103. MR0866623 Kąkol, J.: Some remarks on \(^{*}\)-Baire-like and on \(b\)-\(^{*}\)-Baire-like spaces. Math. Slovaca 36(3), 233–239 (1986) (46A15) (46A05)Google Scholar
  104. MR0850431 Kąkol, J.: On nonlocally convex and on dual-less separable topological vector spaces. Simon Stevin 60(1), 15–27 (1986) (46A15)Google Scholar
  105. MR0847764 Kąkol, J.: On suprema of metrizable vector topologies with trivial dual. Czech. Math. J. 36(111), no. 3, 343–350 (1986) (46A15) (46A06 46A20)Google Scholar
  106. MR0847357 Kąkol, J.: On bounded multiplier summable sequences in topological vector spaces. Math. Nachr. 125, 175–178 (1986) (46A05)Google Scholar
  107. MR0832715 Kąkol, J.: On countable codimensional subspaces in ultra-\((DF)\) spaces. Acta Math. Hung. 46(3–4), 239–242 (1985) (46A15)Google Scholar
  108. MR0821575 Kąkol, J.: Nonlocally convex spaces and the Hahn-Banach extension property. Bull. Polish Acad. Sci. Math. 33(7–8), 381–393 (1985) (46A15)Google Scholar
  109. MR0808330 Kąkol, J.: On subspaces of \(b\)-spaces in the sense of Noureddine. Math. Nachr. 120, 43–51 (1985) (46A05) (46A22)Google Scholar
  110. MR0817345 Kąkol, J.: On dense subspaces of products of semibornological topological linear spaces. Funct. Approx. Comment. Math. 14, 81–84 (1984) (46A09)Google Scholar
  111. MR0768811 Kąkol, J.: On subspaces of ultrabornological spaces. Comm. Math. Univ. Carolin. 25(2), 247–256 (1984) (46A09) (46A07)Google Scholar
  112. MR0745337 Kąkol, J.: Countable codimensional subspaces of spaces with topologies determined by a family of balanced sets. Comment. Math. Prace Mat. 23(2), 249–257 (1983) (46A09)Google Scholar
  113. MR0708597 Kąkol, J.: On subspaces and products of some topological linear spaces. Arch. Math. (Basel) 40(4), 355–360 (1983) (46A09) (46A15)Google Scholar
  114. MR0721274 Kąkol, J.: On minimal inductive spaces. Math. Nachr. 110, 195–203 (1983) (46A12) (46A30)Google Scholar
  115. MR0702324 Kąkol, J.: Some remarks on subspaces and products of ultrabornological spaces. Simon Stevin 57(1–2), 83–97 (1983) (Reviewer: N. Adasch) (46A07) (46A09)Google Scholar
  116. MR0817328 Kąkol, J.: Topological linear spaces with some Baire-like properties. Funct. Approx. Comment. Math. 13, 109–116 (1982) (46A15) (46A07)Google Scholar
  117. MR0679386 Kąkol, J.: On inductive limits of topological algebras. Colloq. Math. 47(1), 71–78 (1982) (46H05) (46A12 46A15)Google Scholar
  118. MR0675763 Kąkol, J.: A note on functional representation of topological algebras equipped with a generalized inductive limit topology. Math. Nachr. 106, 301–307 (1982) (46H15) (46A15)Google Scholar
  119. MR0664515 Kąkol, J.: A note on metrizable linear topologies strictly finer than a given metrizable complete linear topology. Math. Z. 180(3), 287–290 (1982) (46A06)Google Scholar
  120. MR0646938 Kąkol, J.: Some remarks on countable codimensional subspaces of topological vector spaces. Rev. Roum. Math. Pures Appl. 26(9), 1197–1202 (1981) (46A07)Google Scholar
  121. MR0641439 Kąkol, J.: Some remarks on Baire-like spaces. Comment. Math. Prace Mat. 22(2), 257–262 (1980/81) (46A05)Google Scholar
  122. MR0616972 Kąkol, J.: Non-locally convex Baire-like, \(b\)-Baire-like spaces and spaces with generalized inductive limit topology. Rev. Roumaine Math. Pures Appl. 25(10), 1523–1530 (1980) (46A15)Google Scholar
  123. MR0594128 Alexiewicz, A., Kąkol, J.: Garling algebras. Funct. Approx. Comment. Math. 8, 111–118 (1980) (46H05) (46M40)Google Scholar
  124. MR0473773 Jurkiewicz, L., Kąkol, J.: Some remarks on Wiweger topology and generalization of inductive limit topology. Funct. Approx. Comment. Math. 5, 179–182 (1977) (46A15) (46M10)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Applied Mathematics and IUMPAUniversitat Politècnica de ValènciaValènciaSpain
  2. 2.Department of Applied MathematicsUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations