A Global View Programming Abstraction for Transitioning MPI Codes to PGAS Languages

  • Tiffany M. Mintz
  • Oscar Hernandez
  • David E. Bernholdt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8356)


The multicore generation of scientific high performance computing has provided a platform for the realization of Exascale computing, and has also underscored the need for new paradigms in coding parallel applications. The current standard for writing parallel applications requires programmers to use languages designed for sequential execution. These languages have abstractions that only allow programmers to operate on the process centric local view of data. To provide suitable languages for parallel execution, many research efforts have designed languages based on the Partitioned Global Address Space (PGAS) programming model. Chapel is one of the more recent languages to be developed using this model. Chapel supports multithreaded execution with high-level abstractions for parallelism. With Chapel in mind, we have developed a set of directives that serve as intermediate expressions for transitioning scientific applications from languages designed for sequential execution to PGAS languages like Chapel that are being developed with parallelism in mind.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Top 500 supercomputers (2013), http://www.top500.org/
  2. 2.
    Bolosky, W., Fitzgerald, R., Scott, M.: Simple but effective techniques for numa memory management. In: Proceedings of the Twelfth ACM Symposium on Operating Systems Principles, SOSP 1989, pp. 19–31. ACM, New York (1989)CrossRefGoogle Scholar
  3. 3.
    Black, D., Gupta, A., Weber, W.D.: Competitive management of distributed shared memory. In: COMPCON Spring 1989. Thirty-Fourth IEEE Computer Society International Conference: Intellectual Leverage, Digest of Papers, pp. 184–190 (1989)Google Scholar
  4. 4.
    Blagodurov, S., Zhuravlev, S., Fedorova, A., Kamali, A.: A case for numa-aware contention management on multicore systems. In: Proceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques, PACT 2010, pp. 557–558. ACM, New York (2010)Google Scholar
  5. 5.
    Rabenseifner, R., Hager, G., Jost, G.: Hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes. In: 2009 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing, pp. 427–436 (2009)Google Scholar
  6. 6.
    Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., Chapman, B.: High performance computing using mpi and openmp on multi-core parallel systems. Parallel Comput. 37(9), 562–575 (2011)CrossRefGoogle Scholar
  7. 7.
    Kasim, H., March, V., Zhang, R., See, S.: Survey on parallel programming model. In: Cao, J., Li, M., Wu, M.-Y., Chen, J. (eds.) NPC 2008. LNCS, vol. 5245, pp. 266–275. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Yelick, K., Bonachea, D., Chen, W.Y., Colella, P., Datta, K., Duell, J., Graham, S.L., Hargrove, P., Hilfinger, P., Husbands, P., Iancu, C., Kamil, A., Nishtala, R., Su, J., Welcome, M., Wen, T.: Productivity and performance using partitioned global address space languages. In: Proceedings of the 2007 International Workshop on Parallel Symbolic Computation, PASCO 2007, pp. 24–32. ACM, New York (2007)CrossRefGoogle Scholar
  9. 9.
    Bonachea, D., Hargrove, P., Welcome, M., Yelick, K.: Porting gasnet to portals: Partitioned global address space (pgas) language support for the cray xt. Cray User Group, CUG 2009 (2009)Google Scholar
  10. 10.
    Barrett, R.F., Alam, S.R., d Almeida, V.F., Bernholdt, D.E., Elwasif, W.R., Kuehn, J.A., Poole, S.W., Shet, A.G.: Exploring hpcs languages in scientific computing. Journal of Physics: Conference Series 125(1), 012034 (2008)Google Scholar
  11. 11.
    Dun, N., Taura, K.: An empirical performance study of chapel programming language. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), pp. 497–506. IEEE Computer Society, Los Alamitos (2012)Google Scholar
  12. 12.
    Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)CrossRefGoogle Scholar
  13. 13.
    Kennedy, K., Koelbel, C., Zima, H.: The rise and fall of high performance fortran: an historical object lesson. In: Proceedings of the Third ACM SIGPLAN Conference on History of Programming Languages, HOPL III, pp. 7–1–7–22. ACM, New York (2007)Google Scholar
  14. 14.
    Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA 2005, pp. 519–538. ACM, New York (2005)CrossRefGoogle Scholar
  15. 15.
    Chamberlain, B.L., Choi, S.E., Deitz, S.J., Snyder, L.: The high-level parallel language zpl improves productivity and performance. In: Proceedings of the First Workshop on Productivity and Performance in High-End Computing (PPHEC 2004), pp. 66–75. Citeseer (2004)Google Scholar
  16. 16.
    Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E., Warren, K.: Introduction to UPC and language specification. Technical report, Center for Computing Sciences (May 1999)Google Scholar
  17. 17.
    Nieplocha, J., Krishnan, M., Tipparaju, V., Palmer, B.: Global Arrays User ManualGoogle Scholar
  18. 18.
    Numrich, R.W., Reid, J.K.: Co-Array Fortran for parallel programming. ACM Fortran Forum 17(2), 1–31 (1998)CrossRefGoogle Scholar
  19. 19.
    Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy, A., Hilfinger, P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: A high performance Java dialect. Concurrency: Practice and Experience 10, 825–836 (1998)CrossRefGoogle Scholar
  20. 20.
    Allen, E., Chase, D., Luchangco, V., Maessen, J.W., Ryu, S., Steele Jr., G., Tobin-Hochstadt, S.: The Fortress language specification, version 0.785 (2005) Google Scholar
  21. 21.
    Cray Inc.: Chapel specification 0.4 (2005), http://chapel.cs.washington.edu/specification.pdf
  22. 22.
    Charles, P., Donawa, C., Ebicioğlu, K., Grothoff, C., Kielstra, A., Saraswat, V., Sarkar, V., Praun, C.V.: X10: An object-oriented approach to non-uniform cluster computing. In: Proceedings of the 20th ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and Applications, ACM SIGPLAN, pp. 519–538 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tiffany M. Mintz
    • 1
  • Oscar Hernandez
    • 1
  • David E. Bernholdt
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations