Solution of the Equation of Motion

  • Sergio Oller
Part of the Lecture Notes on Numerical Methods in Engineering and Sciences book series (LNNMES)


This chapter deals with the solution of the equation of motion in its semi-discrete form in the time domain (see equilibrium equation, section 2.5). Below is the assembly of equation 2.72 (or 2.73 if the equilibrium is achieved in the reference configuration) which defines the equilibrium in the solid at time t + Δt,
$$ \underset{\varOmega^e}{\mathrm{A}}{}^i\left[{\displaystyle \underset{{\mathrm{V}}^e}{\int }{\sigma}_{ij}{\nabla}_i^S{N}_{jk} dV}\right]_{\varOmega^e}^{t+\varDelta t}=\underset{\varOmega^e}{\mathrm{A}}{}^i\left[{\displaystyle \underset{S^e}{\oint }{t}_i{N}_{ik}\ dS}+{\displaystyle \underset{V^e}{\int}\uprho\ {b}_i{N}_{ik} dV}\right]_{\varOmega^e}^{t+\varDelta t}-\underset{\varOmega^e}{\mathrm{A}}{}^i\left[{\displaystyle \underset{V^e}{\int}\uprho\;{N}_{ki}\;{N}_{ij} dV}\right]_{\varOmega^e}^{t+\varDelta t}\;{\left.{\ddot{U}}_j\right|}_{\varOmega^e}^{t+\varDelta t} $$

Copyright information

© International Center for Numerical Methods in Engineering (CIMNE) 2014

Authors and Affiliations

  • Sergio Oller

There are no affiliations available

Personalised recommendations