Advertisement

On the Concept of Endogenous Volatility

  • Orlando Gomes
Chapter
Part of the New Economic Windows book series (NEW)

Abstract

Most financial and economic time-series display a strong volatility around their trends. The difficulty in explaining this volatility has led economists to interpret it as exogenous, i.e., as the result of forces that lie outside the scope of the assumed economic relations. Consequently, it becomes hard or impossible to formulate short-run forecasts on asset prices or on values of macroeconomic variables. However, many random looking economic and financial series may, in fact, be subject to deterministic irregular behavior, which can be measured and modelled. We address the notion of endogenous volatility and exemplify the concept with a simple business-cycles model.

Keywords

Endogenous volatility Volatility clustering Nonlinear dynamics Chartists and fundamentalists Periodicity and chaos Business cycles 

Notes

Acknowledgments

the author would like to thank the participants and the organizers of the XII Iberian-Italian congress of financial and actuarial mathematics (Lisbon, July 2011), where an earlier draft of this paper was presented; the author also thanks an anonymous referee and the editors for helpful comments. The usual disclaimer applies.

References

  1. Adrangi, B., Allender, M., Chatrath, A., Raffiee, K.: Nonlinearities and chaos: evidence from exchange rates. Atlantic Econ. J. 38, 247–248 (2010)CrossRefGoogle Scholar
  2. Barnett, W.A., Chen, P.: The aggregation-theoretic monetary aggregates are chaotic and have strange attractors: an econometric application of mathematical chaos. In: Barnett, W.A., Berndt, E., White, H. (eds.) Dynamic Econometric Modelling, pp. 199–245. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  3. Barnett, W.A., Serletis, A., Serletis, D.: Nonlinear and complex dynamics in real systems. Int. J. Nonlinear Sci. Numer. Simul. 7, 191–196 (2006)CrossRefGoogle Scholar
  4. Bollerslev, T.: Generalized autoregressive conditional heteroscedasticity. J. Econometrics 31, 307–327 (1986)CrossRefGoogle Scholar
  5. Bollerslev, T.: Glossary to ARCH (GARCH). In Bollerslev, T., Russell J.R., Watson M.W. (eds.) Volatility and Time Series Econometrics: Essays in Honor of Robert Engle, pp. 137–163. Oxford University Press, Oxford (2010)Google Scholar
  6. Bollerslev, T., Chou, R.Y., Kroner, K.F.: Arch modeling in finance: a review of the theory and empirical evidence. J. Econometrics 52, 5–59 (1992)CrossRefGoogle Scholar
  7. Boswijk, H.P., Hommes, C.H., Manzan, S.: Behavioral heterogeneity in stock prices. J. Econ. Dyn. Control 31, 1938–1970 (2007)CrossRefGoogle Scholar
  8. Branch, W.A., Evans, G.W.: Model uncertainty and endogenous volatility. Revi. Econ. Dyn. 10, 207–237 (2007)CrossRefGoogle Scholar
  9. Branch, W.A., McGough, B.: A new-keynesian model with heterogeneous expectations. J. Econ. Dyn. Control 33, 1036–1051 (2009)CrossRefGoogle Scholar
  10. Brock, W.A., Hommes, C.H.: A rational route to randomness. Econometrica 65, 1059–1095 (1997)CrossRefGoogle Scholar
  11. Brock, W.A., Hommes, C.H.: Heterogeneous beliefs and routes to chaos in a simple asset pricing model. J. Econ. Dyn. Control 22, 1235–1274 (1998)CrossRefGoogle Scholar
  12. Brock, W.A., Hommes, C.H., Wagener, F.O.O.: Evolutionary dynamics in markets with many trader types. J. Math. Econ. 41, 7–42 (2005)CrossRefGoogle Scholar
  13. Chen, H.-J., Li, M.-C., Lin, Y.-J.: Chaotic dynamics in an overlapping generations model with myopic and adaptive expectations. J. Econ. Behav. Organ 67, 48–56 (2008)CrossRefGoogle Scholar
  14. Dieci, R., Westerhoff, F.: Heterogeneous speculators, endogenous fluctuations and interacting markets: a model of stock prices and exchange rates. J. Econ. Dyn. Control 34, 743–764 (2010)CrossRefGoogle Scholar
  15. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica 50, 987–1007 (1982)CrossRefGoogle Scholar
  16. Engle, R.F.: New frontiers for arch models. J. Appl. Econometrics 17, 425–446 (2002)CrossRefGoogle Scholar
  17. Fanti, L., Manfredi, P.: Neoclassical labour market dynamics, chaos and the real wage phillips curve. J. Econ. Behav. Organ. 62, 470–483 (2007)CrossRefGoogle Scholar
  18. Gaunersdorfer, A., Hommes, C.H., Wagener, F.O.O.: Bifurcation routes to volatility clustering under evolutionary learning. J. Econ. Behav. Organ. 67, 27–47 (2008)CrossRefGoogle Scholar
  19. Gomes, O.: Routes to chaos in macroeconomic theory. J. Econ. Stud. 33, 437–468 (2006)CrossRefGoogle Scholar
  20. Grandmont, J.-M.: Nonlinear difference equations, bifurcations and chaos: an introduction. Res. Econ. 62, 122–177 (2008)CrossRefGoogle Scholar
  21. Hallegatte, S., Ghil, M., Dumas, P., Hourcade, J.C.: Business cycles, bifurcations and chaos in a neo-classical model with investment dynamics. J. Econ. Behav. Organ. 67, 57–77 (2008)CrossRefGoogle Scholar
  22. Hommes, C.H., Sonnemans, J., Tuinstra, J., van de Velden, H.: A strategy experiment in dynamic asset pricing. J. Econ. Dyn. Control 29, 823–843 (2005)CrossRefGoogle Scholar
  23. Hommes, C.H., Sonnemans, J., Tuinstra, J., van de Velden, H.: Expectations and bubbles in asset pricing experiments. J. Econ. Behav. Organ. 67, 116–133 (2008)CrossRefGoogle Scholar
  24. Kikuchi, T., Stachurski, J.: Endogenous inequality and fluctuations in a two-country model. J. Econ. Theory 144, 1560–1571 (2009)CrossRefGoogle Scholar
  25. Li, T., Yorke, J.: Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)CrossRefGoogle Scholar
  26. Lines, M. (ed.): Nonlinear Dynamical Systems in Economics. Springer, New York (2005)Google Scholar
  27. Lines, M., Westerhoff, F.: Inflation expectations and macroeconomic dynamics: the case of rational versus extrapolative expectations. J. Econ. Dyn. Control 34, 246–257 (2010)CrossRefGoogle Scholar
  28. Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 36, 394–419 (1963)CrossRefGoogle Scholar
  29. Mankiw, N.G., Reis, R.: Sticky information versus sticky prices: a proposal to replace the new keynesian phillips curve. Q. J. Econ. 117, 1295–1328 (2002)CrossRefGoogle Scholar
  30. Mankiw, N.G., Reis, R.: Pervasive stickiness. Am. Econ. Rev. 96, 164–169 (2006)CrossRefGoogle Scholar
  31. Manzan, S., Westerhoff, F.: Heterogeneous expectations, exchange rate dynamics and predictability. J. Econ. Behav. Organ. 64, 111–128 (2007)CrossRefGoogle Scholar
  32. McFadden, D.: Conditional logit analysis of qualitative choice behavior. In: Zarembka, P. (ed.) Frontiers in Econometrics, pp. 105–142. Academic Press, New York (1973)Google Scholar
  33. Medio, A., Lines, M.: Nonlinear Dynamics: A Primer. Cambridge University Press, Cambridge, UK (2001)CrossRefGoogle Scholar
  34. Ruelle, D.: Where can one hope to profitably apply the ideas of chaos? Phys. Today 47, 24–30 (1994)CrossRefGoogle Scholar
  35. Serletis, A., Gogas, P.: Chaos in east european black market exchange rates. Res. Econ. 51, 359–385 (1997)CrossRefGoogle Scholar
  36. Shiller, R.J.: Do stock prices move too much to be justified by subsequent changes in dividends? Am. Econ. Rev. 71, 421–436 (1981)Google Scholar
  37. Sushko, I., Gardini, L., Puu, T.: Regular and chaotic growth in a hicksian floor/ceiling model. J. Econ. Behav. Organ. 75, 77–94 (2010)CrossRefGoogle Scholar
  38. Tong, H.: Non-linear Time Series: a Dynamical System Approach. Oxford University Press, Oxford (1990)Google Scholar
  39. Wieland, C., Westerhoff, F.: Exchange rate dynamics, central bank interventions and chaos control methods. J. Econ. Behav. Organ. 58, 117–132 (2005)CrossRefGoogle Scholar
  40. Yokoo, A., Ishida, J.: Misperception-driven chaos: theory and policy implications. J. Econ. Dyn. Control 32, 1732–1753 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Lisbon Higher Institute of Accounting and Administration (ISCAL/IPL) LisbonPortugal

Personalised recommendations