Skip to main content

Kaldorian Assumptions and Endogenous Fluctuations in the Dynamic Fixed-Price IS-LM Model

  • Chapter
  • First Online:
  • 1301 Accesses

Part of the book series: New Economic Windows ((NEW))

Abstract

With the aim of better understanding the conditions which determine endogenous fluctuations at business cycle frequencies, recent literature has revived interest in the Schinasi’s variant of the dynamic, intermediate-run, IS-LM model (Schinasi 1981, 1982). Results, however, remain confined to Kaldorian-type economies, namely to those economies which present a greater-than-unity marginal propensity to spend out of income. This paper contributes to the debate by showing that, in the case of a negative interest rate sensitivity of savings, stable endogenous cycles can actually emerge as equilibrium solutions of the model also in the case of non Kaldorian-type economies. To this end, we combine the instruments of the global analysis, specifically the homoclinic bifurcation Theorem of Kopell and Howard (1975), with numerical methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Theorem is largely used in mathematics, physics and biology, but has found a surprisingly limited application in economics: to the best of our knowledge, the only applications in \(\mathbb {R}^{2}\) planar systems is in Benhabib et al. (2001) for a Taylor-rule monetary model, and in Benhabib et al. (2008) for a growth model. An application in the \(\mathbb {R}^{3}\) dimension is in Mattana et al. (2009).

  2. 2.

    The idea has been derived from a dynamic theory of the firm in which agents expect aggregate demand to fluctuate around a trend and believe Government attempts to stabilize output around the trend.

  3. 3.

    Notice that Lemma 1 is also of notable interest for related fields. For instance, the possibility of conceputalizing via multiple steady states some paradoxical features of real world time series is of considerable importance in the monetary economics literature (cf., inter al., Bullard and Russel 1999; Bullard 2009).

  4. 4.

    Recall that we need \(\phi ^{\prime \prime }(R)\ne 0\) to account for multiple steady states.

  5. 5.

    Notice that, for system \(\mathcal {S}\), since \(\phi ^{\prime }\left( R\right) \) can change sign in the domain \(D\), the parameters lie in the \(\check{\Omega }\) sub-sector.

  6. 6.

    Notice that, with these parameter values, the saving sensitivity to the interest rate equals, at the bifurcation

    $$\begin{aligned} S_{R}^{*}=\varepsilon _{4}-\bar{\delta }\frac{Y^{*}}{\bar{R}^{*}{}^{2}}=-0.040733821 \end{aligned}$$

    which is consistent with the simulations in Abrar (1989).

References

  • Abrar, M.: The interest elasticity of saving and the functional form of the utility function. South. Econ. J. 55, 594–600 (1989)

    Article  Google Scholar 

  • Azariadis, C., Guesnerie, R.: Sunspot and cycles. Rev. Econ. Stud. 53, 725–736 (1986)

    Article  Google Scholar 

  • Benhabib, J., Nishimura, K., Shigoka, T.: Bifurcation and sunspots in the continuous time equilibrium model with capacity utilization. Int. J. Econo. Theory 4, 337–355 (2008)

    Article  Google Scholar 

  • Benhabib, J., Schmitt-Grohé, S., Uribe, M.: The perils of taylor rules. J. Econ. Theory 96, 40–69 (2001)

    Article  Google Scholar 

  • Bullard, J.B.: A two-headed dragon for monetary policy. Bus. Econo. 44, 73–79 (2009)

    Article  Google Scholar 

  • Bullard, J.B., Russel, S.H.: An empirically plausible model of low real interest rates and unbaked government debt. J. Monet. Econ. 44, 477–508 (1999)

    Article  Google Scholar 

  • Cai, J.: Hopf bifurcation in the is-lm business cycle model with time delay. Electronic J. Diff. Equat. 15, 1–6 (2005)

    Google Scholar 

  • De Cesare, L., Sportelli, M.: A dynamic is-lm model with delayed taxation revenues. Chaos Solitons Fractals 25, 233–244 (2005)

    Article  Google Scholar 

  • Fanti, L., Manfredi, P.: Chaotic business cycles and fiscal policy: an is-lm model with distributed tax collection lags. Chaos Solitons Fractals 32, 736–744 (2007)

    Article  Google Scholar 

  • Gandolfo, G.: Economic Dynamics. Springer, Berlin (1997)

    Book  Google Scholar 

  • Grandmond, J.M.: On endogenous business cycles. Econometrica 53, 995–1046 (1985)

    Article  Google Scholar 

  • Kaldor, N.: A model of the trade cycle. Econ. J. 50, 78–92 (1940)

    Article  Google Scholar 

  • Kopell, N., Howard, L.N.: Bifurcations and trajectories joining critical points. Adv. Math. 18, 306–358 (1975)

    Google Scholar 

  • Makovinyiova, K.: On the existence and stability of business cycles in a dynamic model of a closed economy. Nonlinear Anal. Real World Appl. 12, 1213–1222 (2011)

    Article  Google Scholar 

  • Mattana, P., Nishimura, K., Shigoka, T.: Homoclinic bifurcation and global indeterminacy of equilibrium in a two-sector endogenous growth model. Int. J. Econ. Theory 5, 1–23 (2009)

    Article  Google Scholar 

  • Neamtu, M., Opris, D., Chilarescu, C.: Hopf bifurcation in a dynamic is-lm model with time delay. Chaos Solitons Fractals 34, 519–530 (2007)

    Article  Google Scholar 

  • Neri, U., Venturi, B.: Stability and bifurcations in is-lm economic models. Int. Rev. Econ. 54, 53–65 (2007)

    Article  Google Scholar 

  • Sasakura, K.: On the dynamic behavior of schinasi’s business cycle model. J. Macroecon. 16, 423–444 (1994)

    Article  Google Scholar 

  • Schinasi, G.J.: A nonlinear dynamic model of short run fluctuations. Rev. Econ. Stud. 48, 649–653 (1981)

    Article  Google Scholar 

  • Schinasi, G.J.: Fluctuations in a dynamic, intermediate-run is-lm model: applications of the poincaré-bendixon theorem. J. Econ. Theory 28, 369–375 (1982)

    Article  Google Scholar 

  • Zimka, R.: Existence of Hopf bifurcation in IS-LM model depending on more-dimensional parameter. In: Proceedings of International Scientific Conference on Mathematics, pp. 176–182. Herlany, Slovak Republic (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Venturi .

Editor information

Editors and Affiliations

Appendices

Appendix A

Linearization matrix associated with system \(\mathcal {M}\).

As shown in the text, Schinasi’s model (1981) and (1982) gives rise to the following system of first-order differential equations

Let J \(_{\mathcal {M}}^{*}\) be the Jacobian of the right hand side of system \(\mathcal {M}\) evaluated at the steady state. The single elements of J \(_{\mathcal {M}}^{*}\) are

$$\begin{aligned} j_{11}^{*} =&{\small \partial \dot{R}/\partial R|}_{ss}=-\alpha \frac{L_{Y}^{*}}{L_{R}^{*}}H_{R}^{*} \\ j_{12}^{*} =&{\small \partial \dot{R}/\partial Y|}_{ss}=-\alpha \frac{L_{Y}^{*}}{L_{R}^{*}}H_{Y}^{*}+\tfrac{\alpha L_{Y}^{*}-1}{L_{R}^{*}}\tau \\ j_{21}^{*} =&{\small \partial \dot{Y}/\partial R|}_{ss}=\alpha H_{R}^{*} \\ j_{22}^{*} =&{\small \partial \dot{Y}/\partial Y|}_{ss}=\alpha (H_{Y}^{*}-\tau ) \end{aligned}$$

where, for the sake of a simple representation, the arguments of the functions have been dropped. Therefore, we have

$$\begin{aligned} {\mathbf {J}}_{\mathcal {M}}^{*}{\small =}\left[ \begin{array}{cc} -\alpha \frac{L_{Y}^{*}}{L_{R}^{*}}H_{R}^{*} &{} -\alpha \frac{L_{Y}^{*}}{L_{R}^{*}}H_{Y}^{*}+\tfrac{\alpha L_{Y}^{*}-1}{L_{R}^{*}}\tau \\ \alpha H_{R}^{*} &{} \alpha (H_{Y}^{*}-\tau ) \end{array} \right] \end{aligned}$$
(A.1)

The eigenvalues of (A.1) are the solutions of the characteristic equation

$$\begin{aligned} \det \left( \lambda \mathbf {I-J}_{\mathcal {M}}^{*}\right) =\lambda ^{2}-\text {Tr}({\mathbf {J}}_{\mathcal {M}}^{*})\lambda +\text {Det}({\mathbf {J}}_{\mathcal {M}}^{*}) \end{aligned}$$

where I is the identity matrix. Tr\(({\mathbf {J}}_{\mathcal {M}}^{*})\) and Det\(({\mathbf {J}}_{\mathcal {M}}^{*})\) are Trace and Determinant of \({\mathbf {J}}_{\mathcal {M}}^{*}\), respectively. We obtain

$$\begin{aligned} \text {Tr(}{\mathbf {J}}_{\mathcal {M}}^{*}\text {)}=\alpha \left( H_{Y}^{*}-\tau -\frac{L_{Y}^{*}}{L_{R}^{*}}H_{R}^{*}\right) \end{aligned}$$
$$\begin{aligned} \text {Det(}{\mathbf {J}}_{\mathcal {M}}^{*}\text {)}=\alpha \tau \frac{H_{R}^{*}}{L_{R}^{*}} \end{aligned}$$

Appendix B

Linearization matrix associated with system \(\mathcal {S}\).

Consider now system \(\mathcal {S}\) in the text

$$\begin{aligned} \dot{Y}&= \alpha \left[ \varepsilon _{1}\sqrt{Y^{3}}-\varepsilon _{2}R-\varepsilon _{3}(1-\tau )^{2}Y^{2}-\varepsilon _{4}R-\varepsilon _{5}- \tfrac{\delta Y}{R}+G-\tau Y\right] \end{aligned}$$

Let J \(_{\mathcal {S}}^{*}\) be the Jacobian of the right hand side of system \(\mathcal {S}\) evaluated at the steady state. The single elements of \(\mathbf J _{\mathcal {S}}^{*}\) are the following

$$\begin{aligned} j_{11}^{*} =&{\small \partial \dot{R}/\partial R|}_{ss}=-\tfrac{\gamma \alpha }{\beta }\left( -\varepsilon _{2}-\varepsilon _{4}+\tfrac{\delta }{R^{*}{}^{2}}\right) \\ j_{12}^{*} =&{\small \partial \dot{R}/\partial Y|}_{ss}=-\tfrac{\gamma \alpha }{\beta }\left( \frac{3}{2}\varepsilon _{1}\sqrt{\tfrac{G}{\tau }}-2\varepsilon _{3}(1-\tau )^{2}\tfrac{G}{\tau }\right) -\tfrac{\gamma \alpha -1}{\beta }\tau \\ j_{21}^{*} =&{\small \partial \dot{Y}/\partial R|}_{ss}=\alpha \left[ -\varepsilon _{2}-\varepsilon _{4}+\tfrac{\delta }{R^{*}{}^{2}}\right] \\ j_{22}^{*} =&{\small \partial \dot{Y}/\partial Y|}_{ss}=\alpha \left( \frac{3}{2}\varepsilon _{1}\sqrt{\tfrac{G}{\tau }}-2\varepsilon _{3}(1-\tau )^{2}\frac{G}{\tau }-\tau \right) \end{aligned}$$

where, for the sake of a simple representation, the arguments of the functions have been dropped. Therefore, we have

$$\begin{aligned} {\mathbf {J}}_{\mathcal {S}}^{\mathbf {*}}{\small =}\left[ \begin{array}{cc} \frac{\gamma \alpha }{\beta }H_{R}^{*} &{} \frac{\gamma \alpha }{\beta } H_{Y}^{*}-\frac{\gamma \alpha -1}{\beta }\tau \\ \alpha H_{R}^{*} &{} \alpha (H_{Y}^{*}-\tau ) \end{array} \right] \end{aligned}$$
(B.1)

where \(H_{R}^{*}=-\varepsilon _{2}-\varepsilon _{4}+\tfrac{\delta Y^{*}}{R^{*}{}^{2}}\) and \(H_{Y}^{*}=\frac{3}{2}\varepsilon _{1} \sqrt{\frac{G}{\tau }}-2\varepsilon _{3}(1-\tau )^{2}\frac{G}{\tau }-\tau \). Therefore,

$$\begin{aligned} \text {Tr(}{\mathbf {J}}_{\mathcal {S}}^{\mathbf {*}}\text {)}=\alpha (H_{Y}^{*}-\tau )+\tfrac{\gamma \alpha }{\beta }H_{R}^{*} \end{aligned}$$
$$\begin{aligned} \text {Det(}{\mathbf {J}}_{\mathcal {S}}^{\mathbf {*}}\text {)}=-\tfrac{\alpha \tau H_{R}^{*}}{\beta } \end{aligned}$$

Appendix C

For the sake of a simple discussion, we shall refer to the original version of the two-parameter homoclinic bifurcation Theorem in Kopell and Howard (1975) (Theorem 7.1, p. 334).

Let \((\delta ,\tau )\) be our control parameters. Posit \(\mu =\delta -\bar{\delta }\) and \(\nu =\tau -\bar{\tau }\) where \(\bar{\delta }\) and \(\bar{\tau }\) be the critical values of our bifurcation parameters. Let also \(\bar{R}^{*}\) and \(\bar{Y}^{*}\) be the particular steady state values of the interest rate and income implied by \(\mu =\nu =0\).

Preliminarily, we translate our system of differential equation to the origin and provide a second-order Taylor expansion.

Let \(\tilde{R}=R-\bar{R}^{*}\) and \(\tilde{Y}=Y-\bar{Y}^{*}\). We have, from system \(\mathcal {S}\)

$$\begin{aligned} \overset{\cdot }{\tilde{R}}&= \tfrac{\gamma \alpha }{\beta }\tilde{H}\left( (\bar{Y}^{*}+\tilde{Y}),(\bar{R}^{*}+\tilde{R}),(\bar{\delta }+v),(\bar{\tau }+\mu )\right) \nonumber \\&\quad +\tfrac{\gamma \alpha -1}{\beta }\left[ G-(\bar{\tau } +\mu )(\bar{Y}^{*}+\tilde{Y})\right] \\ \overset{\cdot }{\tilde{Y}}&= \alpha \tilde{H}\left( (\bar{Y}^{*}+ \tilde{Y}),(\bar{R}^{*}+\tilde{R}),(\bar{\delta }+v),(\bar{\tau }+\mu )\right) +\alpha [ G-(\bar{\tau }+\mu )(\bar{Y}^{*}+\tilde{Y}))] \end{aligned}$$
(C.1)

where

$$\begin{aligned} \tilde{H}&=\varepsilon _{1}\sqrt{(\bar{Y}^{*}+\tilde{Y})^{3}}-\varepsilon _{2}(\bar{R}^{*}+\tilde{R})-\varepsilon _{3}(1-\bar{\tau }-\mu )^{2}\left( \bar{Y}^{*}+\tilde{Y}\right) ^{2} \\&\quad -\varepsilon _{4}(\bar{R}^{*}+\tilde{R})-\varepsilon _{5}-\tfrac{\left( \bar{\delta }+v\right) \left( \bar{Y}^{*}+\tilde{Y}\right) }{(\bar{R}^{*}+\tilde{R})} \end{aligned}$$

System C.1 corresponds to the generic two-parameter family of ordinary differential equations \(\dot{X}=F_{\mu ,v}\left( X\right) \) in Kopell-Howard’s original Theorem. We present now, in sequence, the computation necessary to apply the homoclinic bifurcation Theorem 7.1 in Kopell and Howard to system C.1.

  1. 1.

    Computation of \(dF_{\mu ,\nu }\left( \mathbf {0}\right) \). We obtain

    $$\begin{aligned} dF_{\mu ,\nu }\left( \mathbf {0}\right) =\left[ \begin{array}{cc} \frac{2\alpha \gamma }{\beta }\varepsilon _{3}(1-\bar{\tau }-\mu )\bar{Y}^{*}{}^{2}-\frac{\alpha \gamma -1}{\beta }\bar{Y}^{*} &{} -\frac{\alpha \gamma }{\beta }\frac{\bar{Y}^{*}}{\bar{R}^{*}} \\ 2\alpha \varepsilon _{3}(1-\bar{\tau }-\mu )\bar{Y}^{*}{}^{2}-\alpha \bar{Y}^{*} &{} -\frac{\alpha \bar{Y}^{*}}{\bar{R}^{*}} \end{array} \right] \end{aligned}$$
    (C.2)

    Simple algebra gives

    $$\begin{aligned} Tr\ dF_{\mu ,v}(0)&= \tfrac{2\alpha \gamma }{\beta }\varepsilon _{3}(1-\bar{\tau }-\mu )\bar{Y}^{*2}-\tfrac{\alpha \gamma -1}{\beta }\bar{Y}^{*}-\tfrac{\alpha \bar{Y}^{*}}{\bar{R}^{*}} \\ \det dF_{\mu ,v}(0)&= -\tfrac{\alpha \bar{Y}^{*2}}{\beta \bar{R}^{*}} \end{aligned}$$

    At \((\mu ,v)=(0,0)\) (C.2) becomes

    $$\begin{aligned} dF_{0,0}(0)=\left[ \begin{array}{cc} \frac{2\gamma \alpha }{\beta }\varepsilon _{3}(1-\bar{\tau })\bar{Y}^{*}{}^{2}-\frac{\gamma \alpha -1}{\beta }\bar{Y}^{*} &{} -\frac{\gamma \alpha }{\beta }\frac{\bar{Y}^{*}}{\bar{R}^{*}} \\ 2\alpha \varepsilon _{3}(1-\bar{\tau })\bar{Y}^{*}{}^{2}-\alpha \bar{Y}^{*} &{} -\frac{\alpha \bar{Y}^{*}}{\bar{R}^{*}} \end{array} \right] \end{aligned}$$

Since \(dF_{0,0}(0)\) has a double zero eigenvalue, the first requirement of the Theorem is satisfied.

  1. 2.

    Computation of the mapping \(\left( \mu ,v\right) \rightarrow \left( \det dF_{\mu ,v}(0),\ \text {Tr\ }dF_{\mu ,v}(0)\right) \).

    We have

    $$\begin{aligned} \left[ \begin{array}{cc} \frac{\partial }{\partial \mu }\det dF_{\mu v}(0) &{} \frac{\partial }{\partial v}\det dF_{\mu v}(0) \\ \frac{\partial }{\partial \mu }\text {Tr}dF_{\mu v}(0) &{} \frac{\partial }{\partial v}\text {Tr}dF_{\mu v}(0) \end{array} \right] \end{aligned}$$

    which reduces to

    $$\begin{aligned} \left[ \begin{array}{cc} 0 &{} 0 \\ -2\frac{\alpha \gamma }{\beta }\varepsilon _{3}\bar{Y}^{*2} &{} 0 \end{array} \right] \ne 0 \end{aligned}$$

    Therefore the second requirement of the Theorem is satisfied.

    $$\begin{aligned} \tilde{H}&=\varepsilon _{1}\sqrt{(\bar{Y}^{*}+\tilde{Y})^{3}}-\varepsilon _{2}(\bar{R}^{*}+\tilde{R})-\varepsilon _{3}(1-\bar{\tau }-\mu )^{2}\left( \bar{Y}^{*}+\tilde{Y}\right) ^{2} \\&\quad -\varepsilon _{4}(\bar{R}^{*}+\tilde{R})-\varepsilon _{5}-\tfrac{\left( \bar{\delta }+v\right) \left( \bar{Y}^{*}+\tilde{Y}\right) }{\bar{R}^{*}+\tilde{R}} \end{aligned}$$
  2. 3.

    Computation of the \(Q(e,e)\) matrix.

Let \(\mathbf {P}_{i}\), \(i=1,2\) be the matrices of the second order derivatives of system C.1 evaluated at \(\left( \mu ,v\right) =\left( 0,0\right) \). We have

$$\begin{aligned} \mathbf {P}_{1}=\tfrac{\alpha \gamma }{\beta }\left[ \begin{array}{cc} -\frac{2\bar{\delta }\bar{Y}^{*}}{\bar{R}^{*3}} &{} \frac{\bar{\delta }}{\bar{R}^{*2}} \\ \frac{\bar{\delta }}{\bar{R}^{*2}} &{} \varepsilon _{1}\frac{3}{4}\frac{1}{\sqrt{\bar{Y}^{*}}}-2\varepsilon _{3}(1-\bar{\tau })^{2} \end{array} \right] \end{aligned}$$
$$\begin{aligned} \mathbf {P}_{2}=\alpha \left[ \begin{array}{cc} -\frac{2\bar{\delta }\bar{Y}^{*}}{\bar{R}^{*3}} &{} \frac{\bar{\delta }}{\bar{R}^{*2}} \\ \frac{\bar{\delta }}{\bar{R}^{*2}} &{} \frac{3\varepsilon _{1}}{4}\frac{1}{\sqrt{\bar{Y}^{*}}}-2\varepsilon _{3}(1-\bar{\tau })^{2} \end{array} \right] \end{aligned}$$

Let us now compute the right eigenvector \(\mathbf {e} =(e_{1},e_{2})^{T}\) of \({\mathbf {J}}_{\mathcal {S}}^{*}\). A possible candidate is

$$\begin{aligned} \mathbf {e}= \left[ \begin{array}{c} e_{1} \\ e_{2} \end{array} \right] =\left[ \begin{array}{c} -\frac{\frac{\alpha \gamma }{\beta }\left( \frac{3}{2}\varepsilon _{1}\sqrt{\bar{Y}^{*}}-2\varepsilon _{3}(1-\tau )^{2}\bar{Y}^{*}-\frac{\delta }{\bar{R}^{*}}\right) -\frac{\alpha \gamma -1}{\beta }\bar{\tau }}{\frac{\gamma \alpha }{\beta }\left( -(\varepsilon _{2}+\varepsilon _{4})+\delta \frac{\bar{Y}^{*}}{\bar{R}^{*}{}^{2}}\right) } \\ 1 \end{array} \right] \end{aligned}$$

Therefore

$$\begin{aligned} Q(e,e)=\frac{1}{2}\left( \begin{array}{c} e^{T}\mathbf {P}_{1}e \\ e^{T}\mathbf {P}_{2}e \end{array} \right) =\frac{\alpha }{2}\left( \begin{array}{c} -\left( \frac{j_{12}^{*}}{j_{11}^{*}}\right) ^{2}\frac{\gamma }{\beta }\frac{2\bar{\delta }\bar{Y}^{*}}{\bar{R}^{*3}}+\frac{\gamma }{\beta }\left( \frac{3\varepsilon _{1}}{4}\frac{1}{\sqrt{\bar{Y}^{*}}}-2\varepsilon _{3}(1-\bar{\tau })^{2}\right) \\ -\left( \frac{j_{12}^{*}}{j_{11}^{*}}\right) ^{2}\frac{2\bar{\delta }\bar{Y}^{*}}{\bar{R}^{*3}}+\frac{3\varepsilon _{1}}{4}\frac{1}{\sqrt{\bar{Y}^{*}}}-2\varepsilon _{3}(1-\bar{\tau })^{2} \end{array} \right) \end{aligned}$$

Finally

$$\begin{aligned} \left[ dF_{0,0}(0),Q(e,e)\right] =\left[ \begin{array}{cc} &{}\frac{2\alpha \gamma }{\beta }\varepsilon _{3}(1-\bar{\tau })\bar{Y}^{*2}-\frac{\alpha \gamma -1}{\beta }\bar{Y}^{*} -\left( \frac{j_{12}^{*}}{j_{11}^{*}}\right) ^{2}\frac{\gamma }{\beta }\frac{2\bar{\delta }\bar{Y}^{*}}{\bar{R}^{*3}}\\ &{}+\frac{\gamma }{\beta }\left( \frac{3\varepsilon _{1}}{4}\frac{1}{\sqrt{\bar{Y}^{*}}}-2\varepsilon _{3}(1-\bar{\tau })^{2}\right) \\ &{}2\alpha \varepsilon _{3}(1-\bar{\tau })\bar{Y}^{*2}-\alpha \bar{Y}^{*} -\left( \frac{j_{12}^{*}}{j_{11}^{*}}\right) ^{2}\frac{2\bar{\delta }\bar{Y}^{*}}{\bar{R}^{*3}}\\ &{}+\varepsilon _{1}\frac{3}{4}\frac{1}{\sqrt{\bar{Y}^{*}}}-2\varepsilon _{3}(1-\bar{\tau })^{2} \end{array} \right] \end{aligned}$$
(C.3)

where \(j_{11}^{*}=\frac{\gamma \alpha }{\beta }\left( -(\varepsilon _{2}+\varepsilon _{4})+\delta \frac{\bar{Y}^{*}}{\bar{R}^{*}{}^{2}}\right) \) and \(j_{12}^{*}=\frac{\gamma \alpha }{\beta }\left( \frac{3}{2}\varepsilon _{1}\sqrt{\bar{Y}^{*}}-2\varepsilon _{3}(1-\tau )^{2}\bar{Y}^{*}\right. \) \(\left. -\frac{\delta }{\bar{R}^{*}}\right) -\frac{\alpha \gamma -1}{\beta }\tau \). Since (C.3) has rank 2, the third requirement of the Theorem is satisfied.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bella, G., Mattana, P., Venturi, B. (2014). Kaldorian Assumptions and Endogenous Fluctuations in the Dynamic Fixed-Price IS-LM Model. In: Faggini, M., Parziale, A. (eds) Complexity in Economics: Cutting Edge Research. New Economic Windows. Springer, Cham. https://doi.org/10.1007/978-3-319-05185-7_2

Download citation

Publish with us

Policies and ethics