Advertisement

Interaction-Based Approach to Economics and Finance

  • Mitja Steinbacher
  • Matjaz Steinbacher
  • Matej Steinbacher
Chapter
Part of the New Economic Windows book series (NEW)

Abstract

The chapter examines the characteristics of interaction-based models in economics and demonstrates that these models can be an important part of the future research in economics and finance. The economy is considered a complex system which consists of a large number of interacting units who are represented as software bits of data and act upon the specified rules of conduct. The multidisciplinary nature of the agent-based approach makes it highly applicable to examine heterogeneity, interaction, evolution, uncertainty and the agents’ cognitive limitations which are central to economics and finance. After a thorough literature review some interaction-based applications are run.

Keywords

Social interaction Evolutionary activities on networks Complex adaptive systems Agent-based models 

References

  1. Abramson, G., Kuperman, M.: Social games in a social network. Phys. Rev. E 63, 030901 (2001)Google Scholar
  2. Acemoglu, D., Carvalho, V., Ozdaglar, A., Tahbaz-Salehi, A.: The network origins of aggregate fluctuations. Econometrica 80(5), 1977–2016 (2012)Google Scholar
  3. Acemoglu, D., Ozdaglar, A., Gheibi, A.: Spread of (mis)information in social networks. Games Econ. Behav. 70(2), 194–227 (2010)Google Scholar
  4. Acharya, V., Merrouche, O.: Precautionary hoarding of liquidity and inter-bank markets: evidence from the sub-prime crisis. NBER Working Paper 16395 (2010).Google Scholar
  5. Acharya, V., Skeie, D.: A model of liquidity hoarding and term premia in interbank markets. J. Monetary Econ. 58(5), 436–447 (2011)Google Scholar
  6. Akerlof, G.: The market for “lemons”: quality uncertainty and the market mechanism. Q. J. Econ. 84(3), 488–500 (1970)Google Scholar
  7. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)Google Scholar
  8. Albert, R., Jeong, H., Barabasi, A.-L.: Attack and error tolerance of complex networks. Nature 406, 378–382 (2000)Google Scholar
  9. Allen, F., Babus, A.: Networks in finance. Wharton Financial Institutions Center Working Paper 08–07 (2008).Google Scholar
  10. Allen, F., Carletti, E., Gale, D.: Interbank market liquidity and central bank intervention. J. Monetary Econ. 56(5), 639–652 (2009)Google Scholar
  11. Allen, F., Gale, D.: Financial contagion. J. Polit. Econ. 108(1), 1–33 (2000)Google Scholar
  12. Amaral, L., Scala, A., Barthelemy, M., Stanley, E.: Classes of small-world networks. PNAS 97(21), 11149–11152 (2000)Google Scholar
  13. Anderlini, L., Ianni, A.: Path dependence and learning from neighbors. Game. Econ. Behav. 13(1), 141–177 (1996)Google Scholar
  14. Aral, S., Muchnik, L., Sundararajan, A.: Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. PNAS 106(51), 21544–21549 (2009)Google Scholar
  15. Arthur, B.: Inductive reasoning and bounded rationality. Am. Econ. Rev. 84(2), 406–411 (1994)Google Scholar
  16. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)Google Scholar
  17. Axelrod, R.: An evolutionary approach to norms. Am. Polit. Sci. Rev. 80(4), 1095–1111 (1986)Google Scholar
  18. Axelrod, R.: The Complexity of Cooperation: Agent Based Models of Competition and Collaboration. Princeton University Press, Princeton (1997a)Google Scholar
  19. Axelrod, R.: The dissemination of culture: a model with logical convergence and global polarization. J. Conflict Resolut. 41(2), 203–226 (1997b)Google Scholar
  20. Bala, V., Goyal, S.: Learning from neighbours. Rev. Econ. Stud. 65(3), 595–621 (1998)Google Scholar
  21. Ballester, C., Calvo-Armengol, A., Zenou, Y.: Who’s who in networks. Wanted: the key player. Econometrica 74(5), 1403–1417 (2006)Google Scholar
  22. Banerjee, A.: A simple model of herd behaviour. Q. J. Econ. 107(3), 797–817 (1992)Google Scholar
  23. Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)Google Scholar
  24. Barabasi, A.-L., Oltvai, Z.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004)Google Scholar
  25. Barberis, N., Thaler, R.: A survey on behavioral finance. In: Constantinides, G., Harris, M., Stulz, R. (eds.) Handbook of the Economics and Finance: Financial Markets and Asset Pricing, pp. 1053–1128. Elsevier, Amsterdam (2003)Google Scholar
  26. Barro, R., Sala-i-Martin, X.: Economic Growth. MIT Press, MIT (2004)Google Scholar
  27. Baumol, W., Benhabib, J.: Chaos: significance, mechanism, and economic implications. J. Econ. Perspect. 3(1), 77–105 (1989)Google Scholar
  28. Bianconi, G., De Martino, A., Ferreira, F.F., Marsili, M.: Multi-asset minority games. Quant. Finance 8(3), 225–231 (2008)Google Scholar
  29. Bikhchandani, S., Hirshleifer, D., Welch, I.: A theory of fads, fashion, custom and cultural change as informational cascades. J. Polit. Econ. 100(5), 992–1026 (1992)Google Scholar
  30. Blume, L.: The statistical mechanics of best-response strategy revision. Game. Econ. Behav. 11(2), 111–145 (1995)Google Scholar
  31. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)Google Scholar
  32. Boswijk, P., Hommes, C., Manzan, S.: Behavioral heterogeneity in stock prices. J. Econ. Dyn. Control 31(6), 1938–1970 (2007)Google Scholar
  33. Bramoulle, Y., Djebbari, H., Fortin, B.: Identification of peer effects through social networks. J. Econ. 150(1), 41–55 (2009)Google Scholar
  34. Bramoulle, Y., Kranton, R.: Public goods in networks. J. Econ. Theor. 135(1), 478–494 (2007)Google Scholar
  35. Bramoulle, Y., Saint-Paul, G.: Social networks and labor market transitions. Lab. Econ. 17(1), 188–195 (2010)Google Scholar
  36. Brenner, T.: Agent learning representation: advice on modelling economic learning. In: Tesfatsion, L., Judd, K. (eds.) Handbook of Computational Economics: Agent-Based Computational Economics, vol. 2, pp. 895–947. North Holland, Amsterdam (2006)Google Scholar
  37. Brock, W., Durlauf, S.: Interactions-based models. In: Heckman, J., Leamer, E. (eds.) Handbook of Econometrics, vol. 5, pp. 3297–3380. North Holland, Amsterdam (2001a)Google Scholar
  38. Brock, W., Durlauf, S.: Discrete choice with social interactions. Rev. Econ. Stud. 68(2), 235–260 (2001b)Google Scholar
  39. Brock, W., Hommes, C.: Heterogeneous beliefs and routes to chaos in a simple asset pricing model. J. Econ. Dyn. Control 22(8–9), 1235–1274 (1998)Google Scholar
  40. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature 10, 186–198 (2009)Google Scholar
  41. Burnside, C., Eichenbaum, M., Rebelo, S.: Understanding booms and busts in housing markets. NBER Working Paper No. 16734 (2011).Google Scholar
  42. Callaway, D., Newman, M., Strogatz, S., Watts, D.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000)Google Scholar
  43. Calvo-Armengol, A., Jackson, M.: The effects of social networks on employment and inequality. Am. Econ. Rev. 94(3), 426–454 (2004)Google Scholar
  44. Calvo-Armengol, A., Jackson, M.: Networks in labor markets: wage and employment dynamics and inequality. J. Econ. Theor. 132(1), 27–46 (2007)Google Scholar
  45. Camerer, C.: Behavioral Game Theory: Experiments and Strategic Interaction. Princeton University Press, Princeton (2011)Google Scholar
  46. Camerer, C., Ho, T.H.: Experience-weighted attraction learning in normal form games. Econometrica 67(4), 827–874 (1999)Google Scholar
  47. Camerer, C., Loewenstein, G., Prelec, D.: Neuroeconomics: how neuroscience can inform economics. J. Econ. Lit. 43(1), 9–64 (2005)Google Scholar
  48. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591–646 (2009)Google Scholar
  49. Chakraborti, A., Toke, I.M., Patriarca, M., Abergel, F.: Econophysics review: ii. agent-based models. Quant. Finance 11(7), 1013–1041 (2011)Google Scholar
  50. Challet, D., Marsili, M., Zhang, Y.-C.: Minority Games. Oxford University Press, Oxford (2004)Google Scholar
  51. Challet, D., Zhang, Y.-C.: Emergence of cooperation and organization in an evolutionary game. Phys. A 246(3–4), 407–418 (1997)Google Scholar
  52. Chang, M.-H., Harrington, J.: Agent-based models of organizations. In: Tesfatsion, L., Judd, K. (eds.) Handbook of Computational Economic: Agent-Based Computational Economics, vol. 2, pp. 1273–1337. North Holland, Amsterdam (2006)Google Scholar
  53. Chow, F., Chau, H.: Multiple choice minority game. Phys. A 319(1), 601–615 (2003)Google Scholar
  54. Christakis, N., Fowler, J.: The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357(4), 370–379 (2007)Google Scholar
  55. Cont, R., Bouchaud, J.-P.: Herd behavior and aggregate fluctuations in financial markets. Macroecon. Dyn. 4(2), 170–197 (2000)Google Scholar
  56. Corominas-Bosch, M.: Bargaining in a network of buyers and sellers. J. Econ. Theor. 115(1), 35–77 (2004)Google Scholar
  57. Cowan, R., Jonard, N.: Network structure and the diffusion of knowledge. J. Econ. Dyn. Control 28(8), 1557–1575 (2004)Google Scholar
  58. Currarini, S., Jackson, M., Pin, P.: An economic model of friendship: homophily, minorities, and segregation. Econometrica 77(4), 1003–1045 (2009)Google Scholar
  59. Day, R., Huang, W.: Bulls, bears, and market sheep. J. Econ. Behav. Organ. 14(3), 299–329 (1990)Google Scholar
  60. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. Complex Syst. 3(1–4), 87–98 (2000)Google Scholar
  61. DeGroot, M.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)Google Scholar
  62. Delli Gatti, D., Desiderio, S., Gaffeo, E., Cirillo, P., Gallegati, M.: Macroeconomics from the Bottom-up. Springer, Milano (2011)Google Scholar
  63. Delli Gatti, D., Gallegati, M., Greenwald, B., Russo, A., Stiglitz, J.: The financial accelerator in an evolving credit network. J. Econ. Dyn. Control 34(9), 1627–1650 (2010)Google Scholar
  64. DeLong, B., Schleifer, A., Summers, L., Waldmann, R.: Noise trader risk in financial markets. J. Polit. Econ. 98(4), 703–738 (1990)Google Scholar
  65. Dresher, M.: A Sampling Inspection Problem In Arms Control Agreements: A Game-Theoretic Analysis. RAND Corporation, Santa Monica (1962)Google Scholar
  66. Ellison, G., Fudenberg, D.: Word-of-mouth communication and social learning. Q. J. Econ. 110(1), 93–125 (1995)Google Scholar
  67. Epstein, J.: Modeling civil violence: an agent-based computational approach. PNAS 99(3), 7243–7250 (2001)Google Scholar
  68. Epstein, J., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom Up. MIT Press, Cambridge (1996)Google Scholar
  69. Erev, I., Roth, A.: Predicting how people play games: reinforcement learning in experimental games with unique, mixed strategy equilibria. Am. Econ. Rev. 88(4), 848–881 (1998)Google Scholar
  70. Fagiolo, G., Valente, M., Vriend, N.: Segregation in networks. J. Econ. Behav. Organ. 64(3–4), 316–336 (2007)Google Scholar
  71. Föllmer, H.: Random economies with many interacting agents. J. Math. Econ. 1(1), 51–62 (1974)Google Scholar
  72. Fudenberg, D., Tirole, J.: The Theory of Learning in Games. MIT Press, MIT (1998)Google Scholar
  73. Gabaix, X.: The granular origins of aggregate fluctuations. Econometrica 79(3), 733–772 (2011)Google Scholar
  74. Gai, P., Haldane, A., Kapadia, S.: Complexity, concentration and contagion. J. Monetary Econ. 58(5), 453–470 (2011)Google Scholar
  75. Gentzkow, M., Shapiro, J.: Ideological segregation online and offline. Q. J. Econ. 126(4), 1799–1839 (2011)Google Scholar
  76. Gibbard, A., Varian, H.: Economic Models. J. Phil. 75(11), 664–677 (1978)Google Scholar
  77. Glaeser, E., Sacerdote, B., Scheinkman, J.: Crime and social interactions. Q. J. Econ. 111(2), 507–548 (1996)Google Scholar
  78. Gode, D., Sunder, S.: Allocative efficiency of markets with zero-intelligence traders: market as a partial substitute for individual rationality. J. Polit. Econ. 101(1), 119–137 (1993)Google Scholar
  79. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 3(12), 211–223 (2001)Google Scholar
  80. Golub, B., Jackson, M.: How homophily affects the speed of learning and best-response dynamics. Q. J. Econ. 127(3), 1287–1338 (2012)Google Scholar
  81. Goyal, S.: Connections: An Introduction of the Economics of Networks. Princeton University Press, Princeton (2008)Google Scholar
  82. Goyal, S., Moraga-Gonzalez, J.L.: R&D networks. RAND J. Econ. 32(4), 686–707 (2001)Google Scholar
  83. Granovetter, M.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973)Google Scholar
  84. Grossman, S., Hart, O.: An analysis of the principal-agent problem. Econometrica 51(1), 7–45 (1983)Google Scholar
  85. Guiso, L., Sapienza, P., Zingales, L.: Does culture affect economic outcomes? J. Econ. Perspect. 20(2), 23–48 (2006)Google Scholar
  86. Haldane, A., May, R.: Systemic risk in banking ecosystems. Nature 469(7330), 351–355 (2011)Google Scholar
  87. Hardin, G.: The tragedy of the commons. Science 162, 1243–1248 (1968)Google Scholar
  88. Hayek, F.A.: Economics and knowledge. Economica 4(13), 33–54 (1937)Google Scholar
  89. Hayek, F.A.: The use of knowledge in society. Am. Econ. Rev. 35(4), 519–530 (1945)Google Scholar
  90. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73(4), 1067–1141 (2001)Google Scholar
  91. Helbing, D., Yu, W.: The outbreak of cooperation among success-driven individuals under noisy conditions. PNAS 106(10), 3680–3685 (2009)Google Scholar
  92. Hirshleifer, D.: Investor psychology and asset pricing. J. Finance 56(4), 1533–1597 (2001)Google Scholar
  93. Holme, P., Newman, M.: Nonequilibrium phase transition in the coevolution of networks and opinions. Phys. Rev. E 74(56108) (2006)Google Scholar
  94. Hong, H., Kubik, J., Stein, J.: Social interaction and stock-market participation. J. Finance 59(1), 137–163 (2004)Google Scholar
  95. Hong, H., Kubik, J., Stein, J.: Thy neighbor’s portfolio: word-of-mouth effects in the holdings and trades of money managers. J. Finance 60(6), 2801–2824 (2005)Google Scholar
  96. Hong, H., Stein, J.: A unified theory of underreaction, momentum trading, and overreaction in asset markets. J. Finance 54(6), 2143–2184 (1999)Google Scholar
  97. Ioannides, Y., Datcher Loury, L.: Job information networks, neighborhood effects, and inequality. J. Econ. Lit. 42(4), 1056–1093 (2004)Google Scholar
  98. Iori, G.: A microsimulation of traders activity in the stock market: the role of heterogeneity, agents’ interactions and trade frictions. J. Econ. Behav. Organ. 49(2), 269–285 (2002)Google Scholar
  99. Iori, G., De Masi, G., Precup, O.V., Gabbi, G., Caldarelli, G.: A network analysis of the italian overnight money market. J. Econ. Dyn. Control 32(1), 259–278 (2008)Google Scholar
  100. Jackson, M.: Social and Economic Networks. Princeton University Press, Princeton (2008)Google Scholar
  101. Jackson, M.: An overview of social networks and economic applications. In: Benhabib, J., Bisin, A., Jackson, M. (eds.) Handbook of Social Economics, pp. 511–586. North Holland, Amsterdam (2010)Google Scholar
  102. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47(2), 263–292 (1979)Google Scholar
  103. Kim, G., Markowitz, H.: Investment rules, margin, and market volatility. J. Portfolio Manage. 16(1), 45–52 (1989)Google Scholar
  104. Kindleberger, C., Aliber, R.: Manias, Panics, and Crashes: A History of Financial Crises. Palgrave Macmillan, New York (2011)Google Scholar
  105. Kirman, A.: Communication in markets: a suggested approach. Econ. Lett. 12(2), 101–108 (1983)Google Scholar
  106. Kirman, A.: Whom or what does the representative individual represent? J. Econ. Perspect. 6(2), 117–136 (1992)Google Scholar
  107. Kirman, A.: Ants, rationality, and recruitment. Q. J. Econ. 108(1), 137–156 (1993)Google Scholar
  108. Kirman, A.: The economy as an evolving network. J. Evol. Econ. 7(4), 339–353 (1997)Google Scholar
  109. Kremer, M.: The o-ring theory of economic development. Q. J. Econ. 108(3), 551–575 (1993)Google Scholar
  110. Kreps, D., Wilson, R.: Reputation and imperfect information. J. Econ. Theor. 27(2), 253–279 (1982)Google Scholar
  111. Langton, C.: Computation at the edge of chaos: phase transitions and emergent computation. Phys. D 42(1–3), 12–37 (1990)Google Scholar
  112. LeBaron, B., Arthur, B., Palmer, R.: Time series properties of an artificial stock market. J. Econ. Dyn. Control 23(9–10), 1487–1516 (1999)Google Scholar
  113. LeRoy, S., Werner, J.: Principles of Financial Economics. Cambridge University Press, Cambridge (2001)Google Scholar
  114. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Conference of the ACM Special Interest Group on Knowledge Discovery and Data Mining, pp. 177–187. ACM Press, New York (2005).Google Scholar
  115. Levy, M., Levy, H., Solomon, S.: A microscopic model of the stock market: cycles, booms, and crashes. Econ. Lett. 45(1), 103–111 (1994)Google Scholar
  116. Ljungqvist, L., Sargent, T.: Recursive Macroeconomic Theory. MIT Press, MIT (2004)Google Scholar
  117. Lux, T.: Herd behavior, bubbles and crashes. Econ. J. 105(431), 881–896 (1995)Google Scholar
  118. Lux, T.: The socio-economic dynamics of speculative markets: interacting agents, chaos and the fat tails of return distributions. J. Econ. Behav. Organ. 33(2), 143–165 (1998)Google Scholar
  119. Lux, T., Marchesi, M.: Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397, 498–500 (1999)Google Scholar
  120. Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982).Google Scholar
  121. Milgrom, P., Stokey, N.: Information, trade, and common knowledge. J. Econ. Theor. 26(1), 17–27 (1982)Google Scholar
  122. Montgomery, J.: Job search and network composition: implications of the strength-of-weak-ties hypothesis. Am. Sociol. Rev. 57(5), 586–596 (1992)Google Scholar
  123. Mullainathan, S., Schleifer, A.: The market for news. Am. Econ. Rev. 95(4), 1031–1053 (2005)Google Scholar
  124. Myerson, R.: Graphs and cooperation in games. Math. Oper. Res. 2(3), 225–229 (1977)Google Scholar
  125. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2(12), 2221–2229 (1992)Google Scholar
  126. Nelson, R., Winter, S.: An Evolutionary Theory of Economic Change. Harvard University Press, Cambridge (1982)Google Scholar
  127. Newman, M.: Spread of epidemic disease on networks. Phys. Rev. E 66, 16128 (2002)Google Scholar
  128. Newman, M.: The Structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)Google Scholar
  129. Nowak, M.: Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)Google Scholar
  130. Nowak, M., May, R.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)Google Scholar
  131. Nowak, M., May, R.: The spatial dilemmas of evolution. Int. J. Bifurcat. Chaos 3(1), 35–78 (1993)Google Scholar
  132. Nowak, M., Plotkin, J., Krakauer, D.: The evolutionary language game. J. Theor. Biol. 200, 147–162 (1999)Google Scholar
  133. Osborne, M.: An Introduction to Game Theory. Oxford University Press, New York (2002)Google Scholar
  134. Padgett, J., Ansell, Ch.: Robust action and the rise of the medici, 1400–1434. Am. J. Sociol. 98(6), 1259–1319 (1993)Google Scholar
  135. Palmer, R., Arthur, B., Holland, J., LeBaron, B., Tayler, P.: Artificial economic life: a simple model of a stock market. Phys. D 75(1–3), 264–274 (1994)Google Scholar
  136. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008)Google Scholar
  137. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200–3203 (2001)Google Scholar
  138. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)Google Scholar
  139. Rosu, I.: A dynamic model of the limit order book. Rev. Financial Stud. 22(11), 4601–4641 (2009)Google Scholar
  140. Rubinstein, A.: Modeling Bounded Rationality. MIT Press, Cambridge (1998)Google Scholar
  141. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, New Jersey (2010)Google Scholar
  142. Santos, F., Pacheco, J., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. PNAS 103(9), 3490–3494 (2006)Google Scholar
  143. Sargent, T.: Bounded rationality in macroeconomics. Clarendon Press, Oxford (1993)Google Scholar
  144. Schelling, T.: Dynamic models of segregation. J. Math. Sociol. 1(2), 143–186 (1971)Google Scholar
  145. Schelling, T.: Micromotives and Macrobehavior. Norton, New York (1978)Google Scholar
  146. Schumpeter, J.: The Theory of Economic Development. Harvard University Press, Cambridge (1934)Google Scholar
  147. Schumpeter, J.: Capitalism, Socialism, and Democracy. Harper, New York (1947)Google Scholar
  148. Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani, A., White, D.: Economic networks: the new challenges. Science 325, 422–425 (2009)Google Scholar
  149. Selten, R.: Reexamination of the perfectness concept for equilibrium points in extensive games. Int. J. Game Theor. 4(1), 25–55 (1975)Google Scholar
  150. Shiller, R.: From homo economicus to homo sapiens. J. Econ. Perspect. 14(1), 133–141 (2000)Google Scholar
  151. Shiller, R.: Irrational Exuberance. Princeton University Press, Princeton (2005)Google Scholar
  152. Simon, H.: Administrative Behavior. Cambridge University Press, Cambridge (1957)Google Scholar
  153. Simon, H.: Models of Bounded Rationality. MIT Press, MIT (1997)Google Scholar
  154. Sood, V., Redner, S.: Voter model on heterogeneous graphs. Physical Review Letters 94, 178701 (2005)Google Scholar
  155. Sornette, D.: Why Stock Markets Crash: Critical Events in Complex Financial Systems. Princeton University Press, Princeton (2004)Google Scholar
  156. Steinbacher, M.: Simulating portfolios by using models of social networks. Comput. Econ. Finance 21, 1–145 (2012)Google Scholar
  157. Steinbacher, M., Steinbacher, M., Steinbacher, M.: Credit contagion in financial markets: a network-based approach. SSRN No. 2068716 (2013)Google Scholar
  158. Sutton, R.: Learning to predict by the methods of temporal differences. Mach. Learn. 3, 9–44 (1988)Google Scholar
  159. Szabo, G., Fath, G.: Evolutionary games on graphs. Phys. Rep. 446(4–6), 97–216 (2007)Google Scholar
  160. Taylor, J., Williams, J.: A black swan in the money market. Am. Econ. J. Macroecon. 1(1), 58–83 (2009)Google Scholar
  161. Tesfatsion, L.: Agent-based computational economics: growing economies from the bottom up. Artif. Life 8(1), 55–82 (2002)Google Scholar
  162. Tesfatsion, L., Judd, K. (eds.): Handbook of Computational Economics: Agent-Based Computational Economics, vol. 2. North Holland, Amsterdam (2006)Google Scholar
  163. Tversky, A., Kahneman, D.: Rational choice and the framing of decisions. J. Bus. 59(4), 251–278 (1986)Google Scholar
  164. Vazquez, F., Krapivsky, P., Redner, S.: Constrained opinion dynamics: freezing and slow evolution. J. Phys. A 36(3), 61–68 (2003)Google Scholar
  165. van Lelyveld, I., Liedorp, F.: Interbank contagion in the dutch banking sector: a sensitivity analysis. Int. J. Cent. Banking 2(2), 99–133 (2006)Google Scholar
  166. von Neumann, J.: The Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)Google Scholar
  167. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)Google Scholar
  168. Watts, D., Dodds, P.S.: Influentials, networks, and public opinion formation. J. Consum. Res. 34(4), 441–458 (2007)Google Scholar
  169. Watts, D., Strogatz, S.: Collective dynamics of small world networks. Nature 393(4), 440–442 (1998)Google Scholar
  170. Weibull, J.: Evolutionary Game Theory. MIT Press, MIT (1995)Google Scholar
  171. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601–644 (1983)Google Scholar
  172. Young, P.: The evolution of conventions. Econometrica 61(1), 57–84 (1993)Google Scholar
  173. Zeeman, E.C.: On the unstable behaviour of stock exchanges. J. Math. Econ. 1(1), 39–49 (1974)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mitja Steinbacher
    • 1
  • Matjaz Steinbacher
    • 2
  • Matej Steinbacher
    • 3
  1. 1.Faculty of Business StudiesCatholic InstituteLjubljanaSlovenia
  2. 2.Kiel Institute for the World EconomyKielGermany
  3. 3.Faculty of International Economics, Finances and BusinessUniversity of Donja GoricaPodgoricaMontenegro

Personalised recommendations