Ensemble Neural Network Optimization Using the Particle Swarm Algorithm with Type-1 and Type-2 Fuzzy Integration for Time Series Prediction

  • Martha Pulido
  • Patricia Melin
Part of the Studies in Computational Intelligence book series (SCI, volume 547)


This chapter describes the design of ensemble neural networks using Particle Swarm Optimization for time series prediction with Type-1 and Type-2 Fuzzy Integration. The time series that is being considered in this work is the Mackey-Glass benchmark time series. Simulation results show that the ensemble approach produces good prediction of the Mackey-Glass time series.


Ensemble neural networks Particle swarm Optimization Time series prediction 



We would like to express our gratitude to the CONACYT, Tijuana Institute of Technology for the facilities and resources granted for the development of this research.


  1. 1.
    Brockwell, P.D., Richard, A.D.: Introduction to Time Series and Forecasting, pp. 1–219. Springer, New York (2002)MATHGoogle Scholar
  2. 2.
    Castillo, O., Melin, P.: Type-2 Fuzzy Logic: Theory and Applications. Neural Networks, pp. 30–43. Springer, New York (2008)Google Scholar
  3. 3.
    Castillo, O., Melin, P.: Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory. IEEE Trans. Neural Netw. 13(6), 1395–1408 (2002)CrossRefGoogle Scholar
  4. 4.
    Castillo, O., Melin, P.: Simulation and forecasting complex economic time series using neural networks and fuzzy logic. In: Proceedings of the International Neural Networks Conference 3, pp. 1805–1810 (2001)Google Scholar
  5. 5.
    Castillo, O., Melin, P.: Simulation and forecasting complex financial time series using neural networks and fuzzy logic. In: Proceedings the IEEE the International Conference on Systems, Man and Cybernetics 4, pp. 2664–2669 (2001)Google Scholar
  6. 6.
    Eberhart, R.C., Kennedy, J.: A new optimizer particle swarm theory. In: Proceedings of the Sixth Symposium on Micromachine and Human Science, pp. 39–43 (1995)Google Scholar
  7. 7.
    Eberhart, R.C.: Fundamentals of Computational Swarm Intelligence, pp. 93–129. Wiley, New York (2005)Google Scholar
  8. 8.
    Jang, J.S.R, Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice Hall, Englewood Cliffs, 1996Google Scholar
  9. 9.
    Karnik, N., Mendel, M.: Applications of type-2 fuzzy logic systems to forecasting of time-series. Inf. Sci. 120(1–4), 89–111 (1999)Google Scholar
  10. 10.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings Intelligent Symposium, pp. 80–87, April 2003Google Scholar
  11. 11.
    Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems 7, pp. 231–238. Denver, CO, MIT Press, Cambridge (1995)Google Scholar
  12. 12.
    Mackey, M.C.: Adventures in Poland: having fun and doing research with Andrzej Lasota. Mat. Stosow 5–32 (2007)Google Scholar
  13. 13.
    Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1997)CrossRefGoogle Scholar
  14. 14.
    Maguire, L.P., Roche, B., McGinnity, T.M., McDaid, L.J.: Predicting a chaotic time series using a fuzzy neural network 12(1–4), 125–136 (1998)Google Scholar
  15. 15.
    Melin, P., Castillo, O., Gonzalez, S., Cota, J., Trujillo, W., Osuna, P.: Design of Modular Neural Networks with Fuzzy Integration Applied to Time Series Prediction, vol. 41/2007, pp. 265–273. Springer, Berlin (2007)Google Scholar
  16. 16.
    Multaba, I.M., Hussain, M.A.: Application of Neural Networks and Other Learning Technologies in Process Engineering. Imperial Collage Press, (2001)CrossRefGoogle Scholar
  17. 17.
    Plummer, E.A.: Time Series Forecasting with Feed-forward Neural Networks: Guidelines and Limitations, University of Wyoming, July 2000Google Scholar
  18. 18.
    Pulido, M., Mancilla, A., Melin, P.: An ensemble neural network architecture with fuzzy response integration for complex time series prediction. In: Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control, vol. 257/2009, pp. 85–110. Springer, Berlin (2009)Google Scholar
  19. 19.
    Sharkey, A.: One Combining Artificial of Neural Nets, Department of Computer Science University of Sheffield, UK (1996)Google Scholar
  20. 20.
    Sharkey, A.: Combining Artificial Neural Nets: Ensemble and Modular Multi-net Systems. Springer, London (1999)Google Scholar
  21. 21.
    Shimshoni, Y., Intrator, N.: Classification of seismic signal by integrating ensemble of neural networks. IEEE Trans. Signal Process. 461(5), 1194–1201 (1998)CrossRefGoogle Scholar
  22. 22.
    Sollich, P., Krogh, A.: Learning with ensembles: how over-fitting can be useful. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8, pp. 190–196. Denver CO, MIT Press, Cambridge (1996)Google Scholar
  23. 23.
    Yadav, R.N., Kalra, P.K., John, J.: Time series prediction with single multiplicative neuron model. Soft computing for time series prediction. Appl. Soft Comput. 7(4), 1157–1163 (2007)Google Scholar
  24. 24.
    Yao, X., Liu, Y.: Making use of population information in evolutionary artificial neural networks. IEEE Trans. Syst. Man Cybern. Part B Cybern. 28(3), 417–425 (1998)MathSciNetGoogle Scholar
  25. 25.
    Zhao, L., Yang, Y.: PSO-based single multiplicative neuron model for time series prediction. Expert Syst. Appl. 36(2), Part 2, 2805–2812 (2009)Google Scholar
  26. 26.
    Zhou, Z.-H., Jiang, Y., Yang, Y.-B., Chen, S.-F.: Lung cancer cell identification based on artificial neural network ensembles. Artif. Intell. Med. 24(1), 25–36 (2002)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Tijuana Institute of TechnologyTijuanaMéxico

Personalised recommendations