Design of Fuzzy Controllers for a Hexapod Robot

  • Roberto Sepúlveda
  • Oscar Montiel
  • Rodolfo Reyes
  • Josué Domínguez
Part of the Studies in Computational Intelligence book series (SCI, volume 547)


The legged robots have emerged by the necessity of vehicles capable of travel and access safely on natural or unstructured terrains, in which vehicles with traditional travel systems (like the wheels) are unable to access, or if they achieve, they move on them with very low efficiency. However, despite the advantages of mobile robots with legs, there are limitations that hinder its use like the control of movement of their legs, the algorithm of locomotion, trajectory tracking and the obstacle avoidance. In our days, a very useful alternative applied to control systems is fuzzy logic; this one is capable of modeling mathematical complex systems. Therefore, fuzzy logic has been becoming popular in control systems for complex and nonlinear plants. The aim of this work is to make algorithms to control the hexapod robot body. The development of these algorithms uses fuzzy logic techniques for controlling the servomotors of the robot. Matlab algorithms are performed to establish a wireless communication using the ZigBee communication protocol, and we use the genetic algorithm toolbox from Matlab to make the control of the hexapod robot body in the “x–y” plane, this is a multi-objective optimization problem due to the stabilization of the robot body in “x” and the stabilization of the robot body in “y”.


Hexapod Six-legged robot Static stability Fuzzy controllers Position error PWM Servomotors 


  1. 1.
    Melendez, A., Castillo, O.: Hierarchical genetic optimization of the fuzzy integrator for navigation of a mobile robot. In: Soft Computing Applications in Optimization, Control, and Recognition, pp. 77–96 (2013)Google Scholar
  2. 2.
    Gonzalez, J.L., Castillo, O., Aguilar, L.T.: FPGA as a tool for implementing non-fixed structure fuzzy logic controllers. FOCI, pp. 523–530 (2007)Google Scholar
  3. 3.
    Elsevier Ltd.: Design of a hexapod robot with a servo control and a man-machine interface. Rob. Comp. Integr. Manuf. 8 (2011)Google Scholar
  4. 4.
    Kumar, V., Gardner, J.: Kinematics of redundantly actuated closed chains. IEEE Trans. Rob. Autom. 6, 6 (1990)CrossRefGoogle Scholar
  5. 5.
    Raibert. M., Sutherland, Maquinas que caminan. Investigacion y ciencia, marzo (1983)Google Scholar
  6. 6.
    Lewinger, W.A.: A hexapod walks over irregular terrain using a controller, adapted from an insect’s nervous system. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, p. 6 (2010)Google Scholar
  7. 7.
    Mühlfriedel, T., Berns, K., Dilmanm, R.: hybrid learning concepts for a biologically inspired control of periodic movements for walking machines. In: Soft Computing in Mechatronics, Germany, pp. 38–44, 104–116 (1999)Google Scholar
  8. 8.
    Manoiu-Olaru, S., Nitulescu, M.: Hexapod robot. Mathematical support for modeling and control. IEEE Stoian Viroel, pp. 6 (2011)Google Scholar
  9. 9.
    Mănoi-Olaru, S., Nitulescu, M.: Hexapod robot. Virtual models for preliminary studies. IEEE, p. 6 (2011)Google Scholar
  10. 10.
    Sakr, Z., Petriu, E.M.: Hexapod robot locomotion using a fuzzy controller. In: ROSE, IEEE International Workshop on Robotic and Sensors Environments, p. 5 (2007)Google Scholar
  11. 11.
    Cruz, L., Gerrostieta, E., Ever, M.P.: Fuzzy algorithm of free locomotion for a six legged walking robot. IEEE, p. 5 (2007)Google Scholar
  12. 12.
    Yang, J.M., Kim, J.H.: Fault-tolerant locomotion of the hexapod robot. IEEE Trans. Syst. Man Cybern. (1998)Google Scholar
  13. 13.
    Chen, M.C., Lin, S.L., Lin, N.: A fuzzy controller for hexapod robot with modified fuzzy identification. Taichung, Taiwan 407, R. O. C, IEEE, p. 7 (1996)Google Scholar
  14. 14.
    Campos, R.: Hexapod Locomotion: A Nonlinear Dynamical Systems Approach. Industrial Electronics Department University of Minho, Guimaraes, Portugal, pp. 1–6Google Scholar
  15. 15.
    Ding, X.: Locomotion analysis of hexapod robot. In: Climbing and Walking Robots, Chap. 18, InTech. Beihang University Politecnico di Milano China, Italy (2010)Google Scholar
  16. 16.
    Yurkovich, S., Passino, K.M.: Fuzzy Control, Chap. 2. Addison-Wesley Longman Inc, pp. 23–50 (1998)Google Scholar
  17. 17.
    Montiel, O., Sepúlveda, R., Castillo, O., Melin, P.: Fundamentos de logica difusa, 1st edn. ILCSA, pp. 38–44, 104–116, agosto 2002Google Scholar
  18. 18.
    Montiel, O., Sepúlveda, R., Melin, P., Castillo, O., Porta, M., Meza, I.: Performance of a simple tuned fuzzy controller and a PID controller on a DC motor. FOCI, pp. 531–537 (2007)Google Scholar
  19. 19.
    Melin, P., Castillo, O.: Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. Appl. Soft Comput. 3(4), 353–362 (2003)CrossRefGoogle Scholar
  20. 20.
    Aguilar, L., Melin, P., Castillo, O.: Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach. J. Appl. Soft Comput. 3(3), 209–219 (2003)CrossRefGoogle Scholar
  21. 21.
    Leal-Ramirez, C., Castillo, O., Melin, P., Rodriguez-Diaz, A.: Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181, 519–535 (2011)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Roberto Sepúlveda
    • 1
  • Oscar Montiel
    • 1
  • Rodolfo Reyes
    • 1
  • Josué Domínguez
    • 1
  1. 1.Instituto Politécnico NacionalCentro de Investigación y Desarrollo de Tecnología Digital (CITEDI-IPN)TijuanaMéxico

Personalised recommendations