Advertisement

A Comparative Study of Membership Functions for an Interval Type-2 Fuzzy System used to Dynamic Parameter Adaptation in Particle Swarm Optimization

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 547)

Abstract

This chapter present an analysis of the effects in quality results that brings the different types of membership functions in an interval type-2 fuzzy system used to adapt some parameters of Particle Swarm Optimization (PSO). Benchmark mathematical functions are used to test the methods and a comparison is performed.

Keywords

Type-2 fuzzy logic Particle swarm optimization Dynamic parameter adaptation PSO Membership functions 

References

  1. 1.
    Engelbrecht A.P.: Fundamentals of Computational Swarm Intelligence. University of Pretoria, South Africa (2005)Google Scholar
  2. 2.
    Haupt, R., Haupt, S.: Practical Genetic Algorithms, 2nd edn. A Wiley-Interscience publication, New York (2004)Google Scholar
  3. 3.
    Hongbo, L., Ajith, A.: A fuzzy adaptive turbulent particle swarm optimization. Int. J. Innovative Comput. Appl. 1(1), 39–47 (2007)CrossRefGoogle Scholar
  4. 4.
    Jang, J., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Upper Saddle River (1997)Google Scholar
  5. 5.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, IV. Piscataway, NJ: IEEE Service Center, pp. 1942–1948 (1995)Google Scholar
  6. 6.
    Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  7. 7.
    Liang, Q., Mendel, J.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)CrossRefGoogle Scholar
  8. 8.
    Marcin, M., Smutnicki, C.: Test functions for optimization needs (2005)Google Scholar
  9. 9.
    Olivas, F., Castillo, O.: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Elsevier, Expert systems with applications, pp. 3196–3206 (2012)Google Scholar
  10. 10.
    Olivas, F., Valdez, F., Castillo, O.: Particle swarm optimization with dynamic parameter adaptation using interval type-2 fuzzy logic for benchmark mathematical functions. In: 2013 World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 36–40 (2013)Google Scholar
  11. 11.
    Shi, Y., Eberhart, R.: Fuzzy adaptive particle swarm optimization. In: Evolutionary Computation, pp. 101–106 (2001)Google Scholar
  12. 12.
    Wang, B., Liang, G., ChanLin, W., Yunlong, D.: A new kind of fuzzy particle swarm optimization FUZZY_PSO algorithm. In: 1st International Symposium on Systems and Control in Aerospace and Astronautics. ISSCAA 2006, pp. 309–311 (2006)Google Scholar
  13. 13.
    Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Zadeh, L.: Fuzzy logic. IEEE Comput. 8, 83–92 (1965)Google Scholar
  15. 15.
    Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning—I. Inform. Sci. 8, 199–249 (1975)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations