Fuzzy Labeling of Users in an Educational Intelligent Environment Using an Activity Stream

  • Francisco Arce
  • Mario García-Valdez
Part of the Studies in Computational Intelligence book series (SCI, volume 547)


This chapter presents a method for labeling users in an intelligent environment according to activities drawn from an activity stream. The activity stream is composed by all the activities that are registered in a certain window of time. Using a fuzzy inference engine labels are assigned to students, in order to aggregate the generated data. To evaluate the scalability of the approach several simulations where executed, results show the method is viable tool.


  1. 1.
    Hidalgo, D., Castillo, O., Melin, P.: Type-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms. Inf. Sci. 179(13), 2123–2145 (2009)CrossRefGoogle Scholar
  2. 2.
    Leal-Ramirez, C., Castillo, O., Melin, P., Rodriguez-Diaz, A.: Simulation of the bird age-structured population growth based on an interval type-2 fuzzy cellular structure. Inf. Sci. 181, 519–535 (2011)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Martinez, R., Castillo, O., Aguilar, L.T.: Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci. 179(13), 2158–2174 (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Melin, P., Castillo, O.: Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. J. Appl. Soft Comput. 3(4), 353–362 (2003)CrossRefGoogle Scholar
  5. 5.
    Montiel, O., Roberto, S., Patricia, M., Oscar, C., Miguel, P., Iliana, M.: Performance of a simple tuned fuzzy controller and a PID controller on a DC motor. FOCI, pp. 531–537 (2007)Google Scholar
  6. 6.
    Sepulveda, R., Castillo, O., Melin, P., Montiel, O.: An efficient computational method to implement type-2 fuzzy logic in control applications. Adv. Soft Comput. 41, 45–52 (2007)CrossRefGoogle Scholar
  7. 7.
    Sepulveda, R., Castillo, O., Melin, P., Rodriguez-Diaz, A., Montiel, O.: Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Inf. Sci. 177(10), 2023–2048 (2007)CrossRefGoogle Scholar
  8. 8.
    Sepulveda, R., Montiel, O., Lizarraga, G., Castillo, O.: Modeling and simulation of the defuzzification stage of a type-2 fuzzy controller using the Xilinx system generator and Simulink. Stud. Comput. Intell. 257, 309–325 (2009)CrossRefGoogle Scholar
  9. 9.
    Sepulveda, R., Montiel, O., Castillo, O., Melin, P.: Optimizing the MFs in type-2 fuzzy logic controllers, using the human evolutionary model. Int. Rev. Autom. Control 3(1), 1–10 (2011)Google Scholar
  10. 10.
    Arce, F., García, M.: Personalization of learning object sequencing and deployment in intelligent learning environments. In: Recent Advances on Hybrid Intelligent Systems, pp. 559–567 (2013)Google Scholar
  11. 11.
    Ming, L., Mo, L., Luping, D., Elke, R., Murali, M.: Event stream processing with out-of-order data arrival department of computer science, Worcester Polytechnic Institute Worcester, Massachusetts 01609, USA (2007)Google Scholar
  12. 12.
    Ido, G., Tal, S., Maya, B., Inbal, R., Tal, D.: Swimming against the Streamz: Search and analytics over the enterprise activity stream. In: CIKM ‘12 Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Israel, pp. 1587–1591 (2012)Google Scholar
  13. 13.
    Ido, G., Ariel, R., Inbal, R.: Personalized activity streams: sifting through the “river of news” RecSys ‘11. In: Proceedings of the Fifth ACM Conference on Recommender Systems, Israel, pp. 181–188 (2011)Google Scholar
  14. 14.
    Daniel, A., Don, C., Ugur, Ç., Mitch, C., Christian, C., Sangdon, L., Michael, S., Nesime, T., Stan, Z.: Aurora: A new model and architecture for data stream management. VLDB J. Int. J. Very Large Data Bases 12(2), 120–139 (2003)CrossRefGoogle Scholar
  15. 15.
    Wang, F., Liu, S., Liu, P., Bai, Y.: Bridging physical and virtual worlds: complex event processing for RFID data streams. In: Proceedings of the International Conference on Extending Database Technology, pp. 588–607 (2006)Google Scholar
  16. 16.
    Zengchang, Q.: Learning with fuzzy labels, submitted for the degree of doctor of philosophy department of engineering mathematics. University of Bristol, Bristol (2005)Google Scholar
  17. 17.
    Frits, T., Duin, R.: Dealing with a priori knowledge by fuzzy labels, pattern recognition group. In: Department of Applied Physics, Delft University of Technology, The Netherlands Received for Publication 22 Dec 1980Google Scholar
  18. 18.
    Gutiérrez, J., Hervé, J.: Using the theory of fuzzy logic in the classification of satellite images with mixed coverages: the urban case in Mérida, Venezuela. Interciencia 30(5), 261–266 (2005)Google Scholar
  19. 19.
    Johannes, A., Magne, S., Janos, A.: Learning fuzzy classification rules from labeled data, department of process engineering, university of Veszprem, P.O. Box 158, H-8201 Veszprem, Hungary Received 5 Aug 2000; Accepted 7 Apr 2000Google Scholar
  20. 20.
    Hesse, R.: Triangle distribution: Mathematica link for excel, Graziadia Graduate School of Business, Pepperdine University U.S.A. (2000)Google Scholar
  21. 21.
    Snell, J., Atkins, M., Norris, W., Messina, C., Wilkinson, M., Dolin, R.: JSON activity streams 2.0 (2013)Google Scholar
  22. 22.
    Sombra, A., Valdez, F., Melin, P., Castillo, O.: A new gravitational search algorithm using fuzzy logic to parameter adaptation. In: IEEE Congress on Evolutionary Computation 2013, pp. 1068–1074 (2013)Google Scholar
  23. 23.
    Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 2114–2119 (2009)Google Scholar
  24. 24.
    Valdez, F., Melin, P., Castillo, O.: Parallel particle swarm optimization with parameters adaptation using fuzzy logic. MICAI 2, 374–385 (2012)Google Scholar
  25. 25.
    Valdez, F., Melin, P., Castillo, O.: Bio-inspired optimization methods on graphic processing unit for minimization of complex mathematical functions. In: Recent Advances on Hybrid Intelligent Systems, pp. 313–322 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations