Quality-Assessment Model for Portfolios of Projects Expressed by a Priority Ranking

  • S. Samantha Bastiani
  • Laura Cruz-Reyes
  • Eduardo Fernandez
  • Claudia GómezEmail author
  • Gilberto Rivera
Part of the Studies in Computational Intelligence book series (SCI, volume 547)


Organizations need to make decisions about how to invest and manage the resources to get more benefits, but, commonly the organization’s resources are not enough to support all project proposals. Thus, the decision maker (DM) wants to select the portfolio with the highest contribution to the organizational objectives. But in many practical cases, to know exactly the benefits associated to implement each proposal is too difficult, therefore it is questionable the issue of evaluating portfolio quality in these conditions In order to face these uncertainty situations, the DM usually ranks the applicant projects according to his/her preferences about an estimated impact of each portfolio. However, a correct modeling of the quality of the portfolio is indispensable to develop a model of coherent optimization to the ranking given by the DM. In the literature, this type of problems has been scantily approached in spite of being present in many practical situations of assignment of resources. In this Chapter we propose a quality model of portfolio and an algorithm that solves it. The experimental results show that the algorithm that includes our model offers benefits to the decision maker, and his advantages highlighted with respect to the related works reported in the state of the art.


  1. 1.
    Henriksen, A.D., Traynor, A.J.: A practical R&D project selection scoring tool. IEEE Trans. Eng. Manage. 46(2), 158–170 (1999)CrossRefGoogle Scholar
  2. 2.
    Fernández, E., López, E., Bernal, S., Coello Coello, C.A., Navarro, J.: Evolutionary multi-objective optimization using an outranking-based dominance generalization. Comput. Oper. Res. 37(2), 390–395 (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Leyva, J.C., Fernandez, E.: A new method for group decision support based on ELECTRE-III methodology. Eur. J. Oper. Res. 148(1), 14–27 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Macharis, C., Brans, J.P., Mareschal, B.: The GDSS PROMETHEE procedure. A PROMETHEE-GAIA based procedure for group decision support. J. Decis. Sys. 7, 283–307 (1998)Google Scholar
  5. 5.
    Cooper, R., Edgett, S., Kleinschmidt, E.: Portfolio management for new product development: results of an industry practices study. R&D Manage. 31(4), 361–380 (2001)CrossRefGoogle Scholar
  6. 6.
    Carazo, A.F., Gómez, T., Molina, J., Hernández-Díaz, A.G., Guerreo, F.M., Caballero, R.: Solving a comprehensive model for multi-objective project portfolio selection. Comput. Oper. Res. 37(4), 630–639 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Castro, M.: Development and implementation of a framework for I&D in public organizations. Master’s thesis, Universidad Autónoma de Nuevo León (2007)Google Scholar
  8. 8.
    M, Caballero, R.: Solving a comprehensive model for multi-objective project portfolio selection. Comput. Oper. Res. 37(4), 630–639 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    García, R., Gilberto, Rivera, Claudia, Gómez, Laura, Cruz: Solution to the social portfolio problem by evolutionary algorithms. Int. J. Comb. Optim. Probl. Inf. 3(2), 21–30 (2012)Google Scholar
  10. 10.
    Gabriel, S., Kumar, S., Ordoñez, J., Nasserian, A.: A multi-objective optimization model for project selection with probabilistic consideration. Socio Econ. Plann. Sci. 40(4), 297–313 (2006)CrossRefGoogle Scholar
  11. 11.
    Mavrotas, G., Diakoulaki, D., Koutentsis, A.: Selection among ranked projects under segmentation, policy and logical constraints. Euro. J. Oper. Res. 187(1), 177–192 (2008). 2009CrossRefzbMATHGoogle Scholar
  12. 12.
    Fernández, E., Olmedo, R.: Public project portfolio optimization under a participatory paradigm. Appl. Computat. Intell. Soft Comput. Arc. 2013, 4 (2013)Google Scholar
  13. 13.
    Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester-New York-Weinheim-Brisbane-Singapore- Toronto (2001)zbMATHGoogle Scholar
  14. 14.
    Cruz, L., Fernandez, E.R., Gomez, C.G., Rivera, G.: Multicriteria optimization of interdependent project portfolios with ‘a priori’ incorporation of decision maker preferences. Eureka-2013. Fourth International Workshop Proceedings (2013) Google Scholar
  15. 15.
    Pineda, A.A.S, Estrategias de Búsqueda Local para el problema de programación de tareas en sistemas de procesamiento paralelo. Thesis (2013)Google Scholar
  16. 16.
    Fernández, E., Luz Flerida, Félix, Mazcorro, Gustavo: Multi-objective optimization of an out- ranking model for public resources allocation on competing projects. Int. J Oper. Res. 5(2), 190–210 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary algorithms for solving multi-objective problems. Genetic and Evolutionary Computation, 2nd edn. Springer, Berlin (2007)Google Scholar
  18. 18.
    Fernández, E., Navarro, J.: A genetic search for exploiting a fuzzy preference model of portfolio problems with public projects. Ann. OR 117, 191–213 (2002)CrossRefzbMATHGoogle Scholar
  19. 19.
    Fernández Eduardo, R., Navarro Jorge, A., Olmedo Rafael, A.: Modelos y herramientas computacionales para el análisis de proyectos y la formación de carteras de I&D. Revista Iberoamericana de Sistemas, Cibernética e Informática 1(1), 59–64 (2004)Google Scholar
  20. 20.
    Fernández, E., López, E., López, F., Coello Coello, C.A.: Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization: the extended NOSGA method. Inf. Sci. 181(1), 44–56 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • S. Samantha Bastiani
    • 1
  • Laura Cruz-Reyes
    • 1
  • Eduardo Fernandez
    • 2
  • Claudia Gómez
    • 1
    Email author
  • Gilberto Rivera
    • 1
  1. 1.Instituto Tecnológico de Ciudad Madero1ro. de Mayo Y Sor Juana I. de La Cruz S/N CPTamaulipasMéxico
  2. 2.Universidad Autónoma de Sinaloa, Facultad de Ingeniería CuliacánJosefa Ortiz de Domínguez S/N Ciudad UniversitariaCuliacánMexico

Personalised recommendations