Preference Incorporation into Evolutionary Multiobjective Optimization Using a Multi-Criteria Evaluation Method

  • Laura Cruz-ReyesEmail author
  • Eduardo Fernandez
  • Claudia Gomez
  • Patricia Sanchez
Part of the Studies in Computational Intelligence book series (SCI, volume 547)


Most approaches in the evolutionary multiobjective optimization literature concentrate mainly on generating an approximation of the Pareto front. However, this does not completely solve the problem since the Decision Maker (DM) still has to choose the best compromise solution out of that set. This task becomes difficult when the number of criteria increases. In this chapter, we introduce a new way to incorporate and update the DM’s preferences into a Multiobjective Evolutionary Algorithm, expressed in a set of solutions assigned to ordered categories. We propose a variant of the well-known Non-dominated Sorting Genetic Algorithm II (NSGA-II), called Hybrid-MultiCriteria Sorting Genetic Algorithm (H-MCSGA). In this algorithm, we strengthen the selective pressure based on dominance adding selective pressure based on assignments to categories. Particularly, we make selective pressure towards non-dominated solutions that belong to the best category. In instances with 9 objectives on the project portfolio problem, H-MCSGA outperforms NSGA-II obtaining non-dominated solutions that belong to the most preferred category.


Pareto Front Pareto Optimal Solution Pareto Frontier Multiobjective Optimization Problem Multiobjective Evolutionary Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially financed by CONACYT, PROMEP and DGEST.


  1. 1.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms, pp. 13–46. Wiley, Chichester (2001). (Weinheim-Brisbane-Singapore-Toronto)zbMATHGoogle Scholar
  2. 2.
    Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving MultiObjective Problems, 2nd edn. Springer, New York (2007)Google Scholar
  3. 3.
    Fernandez, E., Lopez, E., Bernal, S., Coello, C.A., Navarro, J.: Evolutionary multiobjective optimization using an outranking-based dominance generalization. Comput. Oper. Res. 37(2), 390–395 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Jaimes, A.L., Martinez, S.Z., Coello, C.A.: An introduction to multiobjective optimization techniques. Optim. Polym. Process. 29–57 (2009)Google Scholar
  5. 5.
    Miettinen, K.: Introduction to multiobjective optimization: noninteractive approaches. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.) Multiobjective Optimization: Interactive and Evolutionary Approaches, pp. 1–26. Springer, Berlin (2008)CrossRefGoogle Scholar
  6. 6.
    Fernandez, E., Lopez, E., Lopez, F., Coello, C.: Increasing selective pressure toward the best compromise in evolutionary multiobjective optimization: the extended NOSGA method. Inf. Sci. 181, 44–56 (2011)Google Scholar
  7. 7.
    Wang, Y., Yang, Y.: Particle swarm optimization with preference order ranking for multi-objective optimization. Inf. Sci. 179(12), 1944–1959 (2009)CrossRefGoogle Scholar
  8. 8.
    Deb, K., Chaudhuri S., Miettinen, K.: Towards estimating nadir objective vector using evolutionary approaches. In: Proceedings of the 8th Genetic and Evolutionary Computation COnference (GECCO’O6), pp. 643–650. (2006)Google Scholar
  9. 9.
    Bechikh, S.: Incorporating decision maker’s preference information in evolutionary multi-objective optimization. Dissertation Ph.D. thesis, High Institute of Management of Tunis, University of Tunis, Tunisia. (2013)
  10. 10.
    Carazo, A., Gomez, T., Molina, J., Hernandez-Diaz, A., Guerrero, F., Caballero, R.: Solving a comprehensive model for multiobjective project portfolio selection. Comput. Oper. Res. 37(4), 630–639 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Castro, M.: Development and implementation of a framework for I&D in public organizations. Master’s thesis, Universidad Autonoma de Nuevo León (2007)Google Scholar
  12. 12.
    Garcia R.: Hyper-Heuristicforsolving social portfolio problem. Master’s thesis, Instituto Tecnológico de Cd., Madero (2010)Google Scholar
  13. 13.
    Fernandez, E., Navarro, J.: A genetic search for exploiting a fuzzy preference model of portfolio problems with public projects. Ann. OR 117(191–213), 191–213 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Fernandez, E., Navarro, J.: A new approach to multicriteria sorting problems based on fuzzy outranking relations: the THESEUS method. Eur. J. Oper. Res. 213, 405–413 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Cruz-Reyes, L., Fernandez, E., Olmedo, R., Sanchez, P., Navarro, J.: Preference Incorporation into evolutionary multiobjective optimization using preference information implicit in a set of assignment examples. In: Proceedings of Fourth International Workshop on Knowledge Discovery, Knowledge Management and Decision Support. Atlantis Press (2013)Google Scholar
  16. 16.
    Rivera, G., Gomez, C., Fernandez, E., Cruz, L., Castillo, O., Bastiani, S.: Handling of synergy into an algorithm for project portfolio selection. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Recent Advances on Hybrid Intelligent Systems, pp. 417–430. Springer, Berlin (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Laura Cruz-Reyes
    • 1
    Email author
  • Eduardo Fernandez
    • 2
  • Claudia Gomez
    • 1
  • Patricia Sanchez
    • 1
  1. 1.Instituto Tecnologico de Ciudad MaderoTamaulipasMexico
  2. 2.Universidad Autonoma de SinaloaSinaloaMexico

Personalised recommendations