On the Exact Solution of VSP for General and Structured Graphs: Models and Algorithms

  • Norberto Castillo-García
  • Héctor Joaquín Fraire Huacuja
  • Rodolfo A. Pazos Rangel
  • José A. Martínez Flores
  • Juan Javier González Barbosa
  • Juan Martín Carpio Valadez
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 547)

Abstract

In this chapter the vertex separation problem (VSP) is approached. VSP is NP-hard with important applications in VLSI, computer language compiler design, and graph drawing, among others. In the literature there are several exact approaches to solve structured graphs and one work that proposes an integer linear programming (ILP) model for general graphs. Nevertheless, the model found in the literature generates a large number of variables and constraints, and the approaches for structured graphs assume that the structure of the graphs is known a priori. In this work we propose a new ILP model based on a precedence representation scheme, an algorithm to identify whether or not a graph has a Grid structure, and a new benchmark of scale-free instances. Experimental results show that our proposed ILP model improves the average computing time of the reference model in 79.38 %, and the algorithm that identifies Grid-structured graphs has an effectiveness of 100 %.

Notes

Acknowledgments

We would like to thank the National Council of Science and Technology of Mexico (CONACYT), the General Direction of Higher Technological Education (DGEST) and the Ciudad Madero Institute of Technology (ITCM) for their financial support. We also thank IBM Academic Initiative for allowing us to use their optimization engine CPLEX v12.5.

References

  1. 1.
    Lengauer, T.: Black-white pebbles and graph separation. Acta Informatica 16, 465–475 (1981)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Duarte, A., Escudero, L., Martí, R., Mladenovic, N., Pantrigo, J., Sánchez-Oro, J.: Variable neighborhood search for the vertex separation problem. Comput. Oper. Res. 39(12), 3247–3255 (2012)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002)CrossRefGoogle Scholar
  4. 4.
    Leiserson, C.: Area-efficient graph layouts (for VLSI). In: Proceedings of IEEE Symposium on Foundations of Computer Science, pp. 270–281 (1980)Google Scholar
  5. 5.
    Bodlaender, H., Gustedt, J., Telle, J.: Linear time register allocation for a fixed number of registers. In: Proceedings of the Symposium on Discrete Algorithms. (1998)Google Scholar
  6. 6.
    Kornai, A.: Narrowness, path-width, and their application in natural language processing. Discrete Appl. Math. 36, 87–92 (1997). Elsevier Science Publishers B. V. (1992)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Lopes, I., de Carvalho, J.: Minimization of open orders using interval graphs. IAENG Int. J. Appl. Math. 40(4), 297–306 (2010)MATHMathSciNetGoogle Scholar
  8. 8.
    Ellis, J., Sudborough, I., Turner, J.: The vertex separation and search number of a graph. Inf. Comput. 113, 50–79 (1994)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Skodinis, K.: Computing optimal linear layouts of trees in linear time. In: Paterson, M. (ed.) Proceedings of 8th Annual European Symposium on Algorithms. LNCS, vol. 1879, pp. 403–414. Springer, London (2000)Google Scholar
  10. 10.
    Bollobás, B., Leader, I.: Edge-Isoperimetric inequalities in the grid. Combinatorica 11, 299–314 (1991)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Chen, D., Batson, R., Dang, Y.: Applied Integer Programming: Modeling and Solution. Wiley publisher. ISBN: 978-1-118-21002-4. (2010)Google Scholar
  12. 12.
    Pantrigo, J., Martí, R., Duarte, A., Pardo, E.: Scatter search for the Cutwidth minimization problem. Ann. Oper. Res. 199(1), 285–304 (2012)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Barabasí, A.: Emergence of Scaling in Complex Networks. Handbook of graphs and networks: from the Genome of the Internet, pp. 69–84. (2005)Google Scholar
  14. 14.
    López, T.: Complejidad Computacional Estructural en Redes Complejas. PhD Thesis. Universidad Autónoma de Nuevo León, México (2012)Google Scholar
  15. 15.
    Eppstein, D., Wang, J.: A steady state model for graphs power laws. arXiv preprint cs/0204001. (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Norberto Castillo-García
    • 1
  • Héctor Joaquín Fraire Huacuja
    • 1
  • Rodolfo A. Pazos Rangel
    • 1
  • José A. Martínez Flores
    • 1
  • Juan Javier González Barbosa
    • 1
  • Juan Martín Carpio Valadez
    • 2
  1. 1.Instituto Tecnológico de Ciudad MaderoMaderoMéxico
  2. 2.Instituto Tecnológico de LeónLeónMéxico

Personalised recommendations