Designing Type-2 Fuzzy Systems Using the Interval Type-2 Fuzzy C-Means Algorithm

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 547)

Abstract

In this work, the Interval Type-2 Fuzzy C-Mean (IT2FCM) algorithm was used for the design of Type-2 Fuzzy Inference Systems using centroids and fuzzy membership matrices for the lower and upper bound of the interval obtained by the IT2FCM algorithm in each data clustering realized by this algorithm, with these elements obtained by IT2FCM algorithm we design the Mamdani, and Sugeno Fuzzy Inference systems for classification of data sets and time series prediction.

References

  1. 1.
    Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, Berlin (1981)CrossRefMATHGoogle Scholar
  2. 2.
    Chang, X., Li, W., Farrell, J.: A C-means clustering based fuzzy modeling method. Fuzzy Systems, 2000. In: The Ninth IEEE International Conference on FUZZ IEEE 2000, vol. 2, 2000, pp. 937–940Google Scholar
  3. 3.
    Gustafson D. E., Kessel W. C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proceeding IEEE Conference Decision Control, San Diego, CA, pp. 761–766 (1979)Google Scholar
  4. 4.
    Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Sys. 1(2), 98–110 (1993)CrossRefGoogle Scholar
  5. 5.
    Kruse, R., Döring, C., Lesot, M. J.: fundamentals of fuzzy clustering. In: Advances in Fuzzy Clustering and its Applications, The Atrium, Southern Gate, Chichester John Wiley & Sons Ltd, West Sussex PO19 8SQ, England, pp. 3–30 (2007)Google Scholar
  6. 6.
    Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A Possibilistic Fuzzy c-Means Clustering Algorithm. IEEE Trans. Fuzzy Sys 13(4), 517–530 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Hirota, K., Pedrycz, W.: Fuzzy computing for data mining. In: Proceeding of the IEEE, vol. 87(9), 1575–1600 (1999)Google Scholar
  8. 8.
    Iyer, N.S., Kendel, A., Schneider, M.: Feature-based fuzzy classification for interpretation of mamograms. Fuzzy Sets Syst. 114, 271–280 (2000)CrossRefMATHGoogle Scholar
  9. 9.
    Philips, W.E., Velthuinzen, R.P., Phuphanich, S., Hall, L.O., Clark, L.P., Sibiger, M.L.: Aplication of fuzzy c-means segmentation technique for tissue differentiation in MR images of hemorrhagic glioblastoma multifrome. Magn. Reson. Imaging 13(2), 277–290 (1995)CrossRefGoogle Scholar
  10. 10.
    Yang, M.-S., Hu, Y.-J., Lin, K.C.-R., Lin, C.C.-L.: Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms. Magn. Reson. Imaging 20, 173–179 (2002)CrossRefGoogle Scholar
  11. 11.
    Karnik, N., Mendel, M.: Operations on type-2 set. Fuzzy Set Syst. 122, 327–348 (2001)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, pp. 213–231. Prentice-Hall Inc, New Jersey (2001)Google Scholar
  13. 13.
    Choi, B., Rhee, F.: Interval type-2 fuzzy membership function generation methods for pattern recognition. Inf. Sci. 179(13), 2102–2122 (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Hwang, C., Rhee, F.: Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means. IEEE Trans. Fuzzy Syst. 15(1), 107–120 (2007)CrossRefGoogle Scholar
  15. 15.
    Rubio, E., Castillo O.: Interval type-2 fuzzy clustering for membership function generation. In: IEEE workshop on hybrid intelligent models and applications (HIMA),13(18), 16–19 April (2013)Google Scholar
  16. 16.
    Rubio E., Castillo O.: Optimization of the interval type-2 fuzzy C-means using particle swarm optimization. In: Proceedings of NABIC 2013, Fargo, USA, pp. 10–15Google Scholar
  17. 17.
    Ceylan, R., Özbay, Y., Karlik, B.: A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering neural network. Expert Syst. Appl. 36(3), 6721–6726 (2009). Part 2CrossRefGoogle Scholar
  18. 18.
    Yen, J., Langari, R.: Fuzzy Logic: Intelligence, Control, and Information, Upper Saddle River. Prentice Hall, New Jersey (1999)Google Scholar
  19. 19.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inform. Sci. 8(3), 199–249 (1975)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1992)CrossRefGoogle Scholar
  21. 21.
    Melin, P., Soto, J., Castillo, O., Soria, J.: A new approach for time series prediction using ensembles of ANFIS models. Experts Syst. Appl. 39(3), 3494–3506 (2012). ElsevierCrossRefGoogle Scholar
  22. 22.
    Pulido, M., Mancilla, A., Melin P.: An ensemble neural network architecture with fuzzy response integration for complex time series prediction. Evol. Des. Intell. Syst. Model. Simul. Control, pp. 85–110 (2009)Google Scholar
  23. 23.
    Pulido, M., Mancilla, A., Melin, P.: Ensemble neural networks with fuzzy logic integration for complex time series prediction. Int. J. Intell. Eng. Inform. 1(1), 89–103 (2010)CrossRefGoogle Scholar
  24. 24.
    Pulido, M., Mancilla, A., Melin, P.: Ensemble neural networks with fuzzy integration for complex time series prediction. Bio-inspired Hybrid Intell. Syst. Image Anal. Pattern Recognit, PP. 143–155 (2009)Google Scholar
  25. 25.
    Soto, J., Castillo, O, Soria J., A new approach for time series prediction using ensembles of ANFIS models. Soft Computing for Intelligent Control and Mobile Robotics, pp. 318–483Google Scholar
  26. 26.
    Soto, J., Melin, P., Castillo, O.: Time series prediction using ensembles of neuro-fuzzy models with interval type-2 and type-1 fuzzy integrators. In: Proceedings of International Joint Conference on Neural Nerworks, Dallas, Texas, USA, August 4–9, pp. 189–194 (2013)Google Scholar
  27. 27.
    Wang, C., Zhang, J.P.: Time series prediction based on ensemble ANFIS. In: Proceedings of the fourth international conference on machine learning and cybernetics, Guangzhou, pp. 18–21 August (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations