Comparison of the Optimal Design of Fuzzy Controllers for the Water Tank Using Ant Colony Optimization

  • Leticia Amador-Angulo
  • Oscar Castillo
Part of the Studies in Computational Intelligence book series (SCI, volume 547)


A study of the behavior and evaluation of the Ant Colony Optimization algorithm (ACO) in Type-1 and Type-2 Fuzzy Controller design is presented in this chapter. The main objective of the work is based on the main reasons in tuning membership functions for the optimization Fuzzy Controllers of the benchmark problem known as the Water Tank with the algorithm of Ant Colony Optimization. For the design of Type-1 and Type-2 Fuzzy Controllers for particular applications, the use of bio-inspired optimization methods have helped in the complex task of finding the appropriate values of the parameters and the structure of fuzzy systems. In this research we consider the application of ACO as the paradigm that aids in the optimal design of Type-1 and Type-2 Fuzzy Controllers. We also analyzed that in evaluating the uncertainty, the results in the simulation are better with Type-2 Fuzzy Controllers. Finally, provide a comparison of the different methods for the case of designing Type-1 and Type-2 Fuzzy Controllers with Ant Colony Optimization.



We would like to express our gratitude to the CONACYT and Tijuana Institute of Technology for the facilities and resources granted for the development of this research.


  1. 1.
    Amador-Angulo, L., Castillo, O.: Comparison of fuzzy controllers for the water tank with Type-1 and Type-2 fuzzy logic. In: NAFIPS 2013, Edmonton, Canada, pp. 1–6Google Scholar
  2. 2.
    Cázarez-Castro, N., Aguilar, L.T., Castillo, O.: Designing Type-1 and Type-2 fuzzy logic controllers via fuzzy lyapunov synthesis for nonsmooth mechanical systems. Eng Appl AI (EAAI) 25, 971–979 (2012)Google Scholar
  3. 3.
    Cervantes, L., Castillo, O., Melin, P.: Intelligent control of nonlinear dynamic plants using a hierarchical modular approach and Type-1 fuzzy logic. MICAI, 2011, pp. 1–12 (2011)Google Scholar
  4. 4.
    Castillo, O., Melin, P.: A review on the design and optimization of interval Type-2 fuzzy controllers. Appl. Soft Comput. (ASC) 12(4), 1267–1278 (2012)CrossRefGoogle Scholar
  5. 5.
    Castillo, O., Melin, P.: Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf. Sci. (ISCI) 205, 1–19 (2012)CrossRefGoogle Scholar
  6. 6.
    Castillo, O.: Interval Type-2 mamdani fuzzy systems for intelligent control. Combining Experimentation Theor. pp. 163–177 (2012)Google Scholar
  7. 7.
    Castillo, O.: Type-2 fuzzy logic in intelligent control applications. Springer, Berlin (2012)CrossRefMATHGoogle Scholar
  8. 8.
    Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1, 28–39 (2006)CrossRefGoogle Scholar
  9. 9.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford, Cambridge Massachusetts Institute of Technology, Cambridge (2004)CrossRefMATHGoogle Scholar
  10. 10.
    Dorigo, M., Blum, M.: Ant colony optimization theory: a survey. Theoret. Comput. Sci. 344(2–3), 243–278 (2005)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, England (2005)Google Scholar
  12. 12.
    Galea, M., Shen, Q.: Simultaneous ant colony optimization algorithms for learning linguistic fuzzy rules. Stud. Comput. Intell. 34, 75--99 (2006) Google Scholar
  13. 13.
    Juang, C.F., Hsu, C.H., Chuang, C.F.: Reinforcement self-organizing interval type-2 fuzzy system with ant colony optimization. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, San Antonio, pp. 771–776 (2009)Google Scholar
  14. 14.
    Karnik, N.N., Mendel, J.M.: Operations on Type-2 fuzzy sets. Int. J. Fuzzy Sets Syst. 122, 327–348 (2001)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Practice Hall, New Jersey (1995)MATHGoogle Scholar
  16. 16.
    Melendez, A., Castillo, O.: Optimization of type-2 fuzzy reactive controllers for an autonomous mobile robot. In: NaBIC 2012, pp. 207–211 (2012)Google Scholar
  17. 17.
    Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic System: Introduction and New Directions. Practice Hall, New Jersey (2001)Google Scholar
  18. 18.
    Mendel, J.M.: Computing derivatives in interval Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 12, 84–98 (2004)CrossRefGoogle Scholar
  19. 19.
    Mendel, J.M., Mouzouris, G.C.: Type-2 fuzzy logic system. IEEE Trans. Fuzzy Syst. 7, 642–658 (1999)CrossRefGoogle Scholar
  20. 20.
    Martinez, R., Castillo, O., Soria, J.: Optimization of membership functions of a fuzzy logic controller for an autonomous wheeled mobile robot using ant colony optimization, pp. 4–6 (2006)Google Scholar
  21. 21.
    Martínez, R., Castillo, O., Aguilar, L.: Intelligent control for a perturbed autonomous wheeled mobile robot using type-2 fuzzy logic and genetic algorithms. JAMRIS 2(1), 1–11 (2008)Google Scholar
  22. 22.
    Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of Type-2. Inf. Control 31, 312–340 (1976)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Naredo, E., Castillo, O.: ACO-tuning of a fuzzy controller for the ball and beam problem. In: MICAI 2011, pp. 58–69 (2011)Google Scholar
  24. 24.
    Neyoy, J., Castillo, O., Soria, J.: Dynamic Fuzzy Logic Parameter Tuning for ACO and Its Application in TSP Problems, Recent Advances on Hybrid Intelligent Systems, pp. 259–271. Springer, Berlin (2013)Google Scholar
  25. 25.
    Porta-García, M., Montiel, O., Sepulveda, R.: An ACO path planner using a FIS for a path selection adjusted with a simple tuning algorithm. JAMRIS 2(1), 1–11 (2008)Google Scholar
  26. 26.
    Sepulveda, R., Castillo, O., Melin, P., Montiel, O.: An efficient computational method to implement type-2 fuzzy logic in control applications. Adv. Soft Comput. 41, 45–52 (2007)CrossRefGoogle Scholar
  27. 27.
    Sepulveda, R., Castillo, O., Melin, P., Rodriguez-Diaz, A., Montiel, O.: Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Inf. Sci. 177(10), 2023–2048 (2007)CrossRefGoogle Scholar
  28. 28.
    Sepulveda, R., Montiel, O., Lizarraga, G., Castillo, O.: Modeling and simulation of the defuzzification stage of a type-2 fuzzy controller using the Xilinx system generator and Simulink. Stud. Comput. Intell. 257, 309–325 (2009)CrossRefGoogle Scholar
  29. 29.
    Sepulveda, R., Montiel, O., Castillo, O., Melin, P.: Optimizing the MFs in type-2 fuzzy logic controllers, using the human evolutionary model. Int. Rev. Autom. Control 3(1), 1–10 (2011)Google Scholar
  30. 30.
    Zadeh, L.A.: The concept of a lingüistic variable and its application to approximate reasoning, Part I. Inf. Sci. 8, 199–249 (1975)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Zadeh, L.A.: The concept of a lingüistic variable and its application to approximate reasoning, Part II. Inf. Sci. 8, 301–357 (1975)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in reasoning and fuzzy logic. Fuzzy Sets Syst. Elsevier 90, 117 (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations