Advertisement

Comparative Study of Social Network Structures in PSO

  • Juan Carlos Vazquez
  • Fevrier Valdez
  • Patricia Melin
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 547)

Abstract

In this chapter a comparative study of social network structures in Particle Swarm Optimization is performed. The social networks employed by the gbest PSO and lbest PSO algorithms are star, ring, Von Neumann and random topologies. Each topology is implemented on four benchmark functions. The objective is knows the performance between each topology with different dimensions. Benchmark functions were used such as Rastrigin, Griewank, Rosenbrock and Sphere.

References

  1. 1.
    Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Procedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE, New York (1995)Google Scholar
  2. 2.
    Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 303–308. IEEE, New York (1997)Google Scholar
  3. 3.
    Kennedy, J., EberhartR.C.: Particle swarm optimization. In: Proceedings of the IEEE International Joint Conference on Neuronal Networks, pp. 1942–1948. IEEE Press, New York (1995)Google Scholar
  4. 4.
    Sombra, A., Valdez, F., Melin, P., Castillo, O.: A new gravitational search algorithm using fuzzy logic to parameter adaptation. In: IEEE Congress on Evolutionary Computation, pp. 1068–1074. IEEE, New York (2013)Google Scholar
  5. 5.
    Valdez, F., Melin, P., Castillo, O.: An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms. Appl. Sof. Comput. 11(2), 2625–2632 (2011)CrossRefGoogle Scholar
  6. 6.
    Valdez, F., Melin, P., Castillo, O.: Parallel particle swarm optimization with parameters adaptation using fuzzy logic. In: MICAI, vol. 2, pp. 374–385. Springer, Mexico (2012)Google Scholar
  7. 7.
    Clerc, M., Kennedy, J.: The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  8. 8.
    Kennedy, J., Spears, W.: Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 78–83. IEEE Press, New York, May 1998Google Scholar
  9. 9.
    Shi, Y., Eberhart, R.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation 1999, CEC 99. IEEE, Washington (1999)Google Scholar
  10. 10.
    Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 2114–2119. IEEE, New York (2009)Google Scholar
  11. 11.
    Vazquez, J.C., Valdez, F., Melin, P.: Fuzzy logic for dynamic adaptation in PSO with multiple topologies. In: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Joint. Albeta, Canada (2013)Google Scholar
  12. 12.
    Vazquez, J.C., Valdez, F., Melin, P.: Comparative study of particle swarm optimization variants in complex mathematics functions. In: Recent Advances on Hybrid Intelligent Systems. Springer, Mexico (2013)Google Scholar
  13. 13.
    Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1671–1676. IEEE, Hawaii 2002Google Scholar
  14. 14.
    Kennedy, J.: Small worlds and megaminds: effects of neighborhood topology on particle swarm performance. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1931–1938. IEEE, Washington D.C. 1999Google Scholar
  15. 15.
    Shi, Y., Eberhart, R.: Parameter selection in particle swarm optimization. In: Proceedings of Evolutionary Programming 98, pp. 591–600. Springer 1998Google Scholar
  16. 16.
    Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 101–106. IEEE Press, New York, May 2001Google Scholar
  17. 17.
    Kennedy, R., Mendes, R., Neighborhood topologies in fully-informed and best-of-neighborhood particle swarms. IEEE Syst. Man Cybern. Soc. 36(4), 515–519 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Juan Carlos Vazquez
    • 1
  • Fevrier Valdez
    • 1
  • Patricia Melin
    • 1
  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations