Design of a Fuzzy System for Flight Control of an F-16 Airplane

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 547)

Abstract

In this paper the main idea is to control the flight of an F-16 airplane using fuzzy system and PID controller to achieve the control. In general, to control the total flight is necessary to control the angle of the elevator, angle of the aileron and the angle of the rudder. For this reason, 3 fuzzy systems are used to control the respective angles. In this paper the fuzzy systems are presented with results using the simulation plant of the airplane.

References

  1. 1.
    Castillo, O.: Design of Interval Type-2 Fuzzy Logic Controllers. Springer, Berlin (2012)Google Scholar
  2. 2.
    Castillo, O., Martinez-Marroquin, R., Melin, P., Valdez, F., Soria, J.: “Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot”. Inf. Sci. 192, 19–38 (2012)CrossRefGoogle Scholar
  3. 3.
    Castillo, O., Melin, P.: A review on the design and optimization of interval type-2 fuzzy controllers. Appl. Soft. Comput. 12(4), 1267–1278 (2012)CrossRefGoogle Scholar
  4. 4.
    Castillo, O., Melin, P.: New fuzzy-fractal-genetic method for automated mathematical modelling and simulation of robotic dynamic systems. IEEE International Conference on Fuzzy Systems 2. pp. 1182–1187, 1998Google Scholar
  5. 5.
    Castillo, O., Melin, P., Montiel, O., Sepúlveda, R.: Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft. Comput. 15(6), 1145–1160 (2011)CrossRefGoogle Scholar
  6. 6.
    Castillo, O., Kacprzyk, J., Pedrycz, W.: Soft Computing for Intelligent Control and Mobile Robotics. Springer, Berlin (2011)Google Scholar
  7. 7.
    Cázarez, N., Aguilar, L., Castillo, O.: Fuzzy logic control with genetic membership function parameters optimization for the output regulation of a servomechanism with nonlinear backlash. Expert Syst. Appl. 37(6), 4368–4378 (2010)CrossRefGoogle Scholar
  8. 8.
    Cervantes, L., Castillo, O.: Design of a fuzzy system for the longitudinal control of an F-14 airplane. In: Soft Computing for Intelligent Control and Mobile Robotics, vol 318/2011, pp. 213–224. Springer, Berlin (2011)Google Scholar
  9. 9.
    Cervantes, L., Castillo, O.: Intelligent control of nonlinear dynamic plants using a hierarchical modular approach and type-2 fuzzy logic. In: Lecture Notes in Computer Science, vol. 7095/2011, pp. 1–12. , Springer, Berlin (2011)Google Scholar
  10. 10.
    Cervantes, L., Castillo, O.: Hierarchical genetic algorithms for optimal type-2 fuzzy system design. Annual Meeting of the North American Fuzzy Information Processing Society, pp 324–329 (2011)Google Scholar
  11. 11.
    Cervantes, L., Castillo O.: Automatic design of fuzzy systems for control of aircraft dynamic systems with genetic optimization. World Congress and AFSS International Conference, pp. OS-413-1–OS-413-7 (2011)Google Scholar
  12. 12.
    Cervantes, L., Castillo, O.: Comparative study of type-1 and type-2 fuzzy systems for the three tank water control problem. LNAI 7630, pp. 362–373. Springer, Berlin (2013)Google Scholar
  13. 13.
    Coley, A.: An Introduction to Genetic Algorithms for Scientists and Engineers. World Scientific, Singapore (1999)Google Scholar
  14. 14.
    Dubois, D., Prade, H.: Fuzzy sets and systems: theory and applications. Academic Press, New York (1980)Google Scholar
  15. 15.
    Gibbens, P., Boyle, D.: Introductory flight mechanics and performance. University of Sydney, Australia (1999)Google Scholar
  16. 16.
    Haupt, R., Haupt, S.: Practical Genetic Algorithm. Wiley InterScience, Hoboken (2004)Google Scholar
  17. 17.
    Hidalgo, D., Melin, P., Castillo, O.: An optimization method for designing type-2 fuzzy inference systems based on the footprint of uncertainty using genetic algorithms. Expert Syst. Appl. 39(4), 4590–4598 (2012)CrossRefGoogle Scholar
  18. 18.
    Martinez-Soto, R., Castillo, O., Aguilar, L.: “Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms”. Inf. Sci. 179(13), 2158–2174 (2009)CrossRefGoogle Scholar
  19. 19.
    Melin, P., Castillo, O.: Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory. J. Appl. Soft Comput. 3(4), 353–362 (2003)CrossRefGoogle Scholar
  20. 20.
    Mitchell, M.: An Introduction to Genetic Algorithms. Massachusetts Institute of Technology Book, Cambridge (1999)Google Scholar
  21. 21.
    Rachman, E., Jaam, J., Hasnah, A.: Non-linear simulation of controller for longitudinal control augmentation system of F-16 using numerical approach. Inf. Sci. J. 164(1–4) 47–60 (2004)Google Scholar
  22. 22.
    Reiner, J., Balas, G., Garrard, W.: Flight control design using robust dynamic inversion and time- scale separation. Autom. J. 32(11), 1493–1504 (1996)Google Scholar
  23. 23.
    Sanchez, E., Becerra, H., Velez, C.: Combining fuzzy, PID and regulation control for an autonomous mini-helicopter. J. Inform. Sci. 177(10), 1999–2022 (2007)CrossRefGoogle Scholar
  24. 24.
    Sefer, K., Omer, C., Okyay, K.: Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Exp. Syst. Appl. J. 37(2), 1229–1234 (2010)Google Scholar
  25. 25.
    Song, Y., Wang, H.: Design of flight control system for a small unmanned tilt rotor aircraft. Chin. J. Aeronaut. 22(3), 250–256 (2009)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Walker, D.J.: Multivariable control of the longitudinal and lateral dynamics of a fly by wire helicopter. Control Eng. Pract. 11(7), 781–795 (2003)CrossRefGoogle Scholar
  27. 27.
    Zadeh, L.: Fuzzy Sets and Fuzzy Information Granulation Theory. Beijing Normal University Press, Beijing (2000)Google Scholar
  28. 28.
    Zadeh, L.: Fuzzy sets. Inf. Control. 8(3), 338–353 (1965)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Zadeh, L.: Shadows of fuzzy sets. Probl. Peredachi Inf. 2(1), 37–44 (1966)MATHMathSciNetGoogle Scholar
  30. 30.
    Zadeh, L.: Fuzzy logic, neural networks and soft computing. ACM Commun. 37(3), 77–84 (1994)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Zadeh, L.A.: Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft. Comput. 2, 23–25 (1998)CrossRefGoogle Scholar
  32. 32.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC-3, 28–44 (1973)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations