Optimization of Benchmark Mathematical Functions Using the Firefly Algorithm

  • Cinthya Solano-Aragón
  • Oscar Castillo
Part of the Studies in Computational Intelligence book series (SCI, volume 547)


Nature-inspired algorithms are more relevant today, such as PSO and ACO, which have been used in various types of problems such as the optimization of neural networks, fuzzy systems, control, and others showing good results. There are other methods that have been proposed more recently, the firefly algorithm is one of them, this paper will explain the algorithm and describe how it behaves. In this chapter the firefly algorithm was applied in optimizing benchmark functions and comparing the results of the same functions with genetic algorithms.


Genetic algorithms Firefly algorithm Benchmark functions Optimization 


  1. 1.
    Liu, Y., Passino, K.M.: Swarm intelligence: a survey. In: International Conference of Swarm Intelligence (2005)Google Scholar
  2. 2.
    Li, L.X., Shao, Z.J., Qian, J.X.: An optimizing method based on autonomous animals: fish swarm algorithm. Syst. Eng. Theory Pract (2002)Google Scholar
  3. 3.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)Google Scholar
  4. 4.
    Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms Foundations and Applications, Stochastic Algorithms: foundations and Applications (SAGA’09). Lecture Notes in Computing Sciences, vol. 5792, pp. 169–178. Springer, Berlin (2009)Google Scholar
  5. 5.
    Sombra, A., Valdez, F., Melin, P., Castillo, O.: A new gravitational search algorithm using fuzzy logic to parameter adaptation. IEEE Congr. Evol. Comput. 1068–1074 (2013)Google Scholar
  6. 6.
    Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 2114–2119. (2009)Google Scholar
  7. 7.
    Valdez, F., Melin, P., Castillo, O.: Parallel particle swarm optimization with parameters adaptation using fuzzy logic. In: MICAI, vol. 2, pp. 374–385 (2012)Google Scholar
  8. 8.
    Holland, H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  9. 9.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp. 942–1948. Piscataway, NJ (1995)Google Scholar
  10. 10.
    Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  11. 11.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1997), 53–66 (1997)CrossRefGoogle Scholar
  12. 12.
    Yang, X.S.: Firefly algorithm stochastic test functions and design optimization. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)CrossRefGoogle Scholar
  13. 13.
    Yang, X.-S.: Firefly algorithm, Lévy flights and global optimization. In: Bramer, M., Ellis, R., Petridis, M. (eds.) Research and Development in Intelligent Systems, vol. XXVI, pp. 209–218. Springer, London (2010)Google Scholar
  14. 14.
    Valdez, F., Melin, P.: Comparative study of particle swarm optimization and genetic algorithms for mathematical complex functions. J. Autom. Mob. Rob. Intell. Syst. JAMRIS (2008)Google Scholar
  15. 15.
    Melendez, A., Castillo, O.: Evolutionary optimization of the fuzzy integrator in a navigation system for a mobile robot. Recent Adv. Hybrid Intell. Syst. 21–31 (2013)Google Scholar
  16. 16.
    Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning, reading, mass. Addison Wesley, Boston (1989)Google Scholar
  17. 17.
    Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)CrossRefGoogle Scholar
  18. 18.
    Valdez, F., Melin, P., Castillo, O.: An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Appl. Soft Comput. 11(2), 2625–2632 (2011)CrossRefGoogle Scholar
  19. 19.
    Valdez, F., Melin, P., Castillo, O.: Bio-inspired optimization methods on graphic processing unit for minimization of complex mathematical functions. Recent Adv. Hybrid Intell. Syst. 313–322 (2013)Google Scholar
  20. 20.
    Kennedy, J., Eberhart, J.R., Shi, Y.: Swarm intelligence. Academic Press, Massachusetts (2001)Google Scholar
  21. 21.
    Rodriguez, K.V.: Multiobjective evolutionary algorithms in non-linear system identification, in automatic control and systems engineering, p. 185. The University of Sheffield, Sheffield (1999)Google Scholar
  22. 22.
    Zadeh, L.A.: Foreword. In: Cordon, O., Herrera, F., Hoffman, F., Magdalena, y L. (eds.) Genetic Fuzzy Systems: evolutionary Tuning And Learning Of Fuzzy Knowledge Bases. (2001)Google Scholar
  23. 23.
    Astudillo, L., Melin, P., Castillo, O.: Optimization of a fuzzy tracking controller for an autonomous mobile robot under perturbed torques by means of a chemical optimization paradigm. Recent Adv Hybrid Intell. Syst. 3–20 (2013)Google Scholar
  24. 24.
    Cervantes, L., Castillo, O.: Genetic optimization of membership functions in modular fuzzy controllers for complex problems. Recent Adv. Hybrid Intell. Syst. 51–62 (2013)Google Scholar
  25. 25.
    Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, Milano (1992)Google Scholar
  26. 26.
    Erol, O.K., Eksin, I.: A new optimization method: big bang-big crunch. Adv. Eng. Softw. 37, 106–111 (2006)CrossRefGoogle Scholar
  27. 27.
    Melin, P., Olivas, F., Castillo, O., Valdez, F., Soria, J., García, J.M.: Valdez: optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert Syst. Appl. 40(8), 3196–3206 (2013)CrossRefGoogle Scholar
  28. 28.
    Baeck, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation. Taylor & Francis, UK (1997)Google Scholar
  29. 29.
    Yang, X.S.: Engineering Optimization: an Introduction with Metaheuristic Applications. Wiley, New Jersey (2010)CrossRefGoogle Scholar
  30. 30.
    Maldonado, Y., Castillo, O., Melin, P.: Optimization of membership functions for an incremental fuzzy PD control based on genetic algorithms. Soft Comput. Intell. Control Mob. Rob. 195–211 (2011)Google Scholar
  31. 31.
    Montiel, O., Sepulveda, R., Melin, P., Castillo, O., Porta, M., Meza, I.: Performance of a simple tuned fuzzy controller and a PID controller on a DC motor. FOCI. 531–537 (2007)Google Scholar
  32. 32.
    Castillo, O., Martinez, A.I., Martinez, A.C.: Evolutionary computing for topology optimization of type-2 fuzzy systems. Adv. Soft Comput. 41, 63–75 (2007)CrossRefGoogle Scholar
  33. 33.
    Castillo, O., Huesca, G., Valdez, F.: Evolutionary computing for topology optimization of type-2 fuzzy controllers. Stud. Fuzziness Soft Comput. 208, 163–178 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Tijuana Institute of TechnologyTijuanaMexico

Personalised recommendations