Optimization of Fuzzy Controllers Design Using the Bee Colony Algorithm

  • Camilo Caraveo
  • Oscar Castillo
Part of the Studies in Computational Intelligence book series (SCI, volume 547)


In this chapter we present the application of the optimization method using bee colony (BCO for its acronym in English, Bee Colony Optimization), for optimizing fuzzy controllers, BCO is a heuristic technique inspired by the behavior of honey bees in the nature, to solve optimization problems. This was tested in two BCO optimization problems, one optimized set of mathematical functions for twenty to fifty dimensions, and two fuzzy controllers’ optimization. The results are compared with other bio-inspired algorithms state of the art, of which we highlight that there is a lot of competition in terms of quality and consistency in the results, even if the method is one of the latest in the field of collective intelligence. Similarly presents some interesting observations derived from observed performance.


  1. 1.
    Sombra, A., Valdez, F., Melin, P., Castillo, O.: A new gravitational search algorithm using fuzzy logic to parameter adaptation. IEEE Congr. Evol. Comput. 1068–1074 (2013)Google Scholar
  2. 2.
    Aceves, A., Aguilar, J.: A simplified version of Mamdani’s fuzzy controller: the natural logic controller. IEEE Trans. Fuzzy Syst. 14(1), 16–30 (2006)CrossRefGoogle Scholar
  3. 3.
    Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence. IEEE Trans. Autom. Control 42(10), 1482–1484 (1997)CrossRefGoogle Scholar
  4. 4.
    Baykasoglu, A., Özbakýr, L., Tapkan, P.: Artificial bee colony algorithm and its application to generalized assignment problem. In: Felix, T.S.C., Manoj, K.T. (eds.) Swarm Intelligence: focus on Ant and Particle Swarm Optimization, pp. 113–143. Itech Education and Publishing, Vienna (2007)Google Scholar
  5. 5.
    Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Sof. Comput. 8(2), 687–697 (2008)CrossRefGoogle Scholar
  6. 6.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Computer Engineering Department, Erciyes University, Turkey (2005)Google Scholar
  7. 7.
    Valdez, F., Melin, P., Castillo, O.: Parallel particle swarm optimization with parameters adaptation using fuzzy logic. In: MICAI, vol. 2, pp. 374–385. Mexico (2012)Google Scholar
  8. 8.
    Man, K.F., Tang, K.S., Kwong, S.: Genetic algorithms: concepts and designs. Springer, Berlin (2000)Google Scholar
  9. 9.
    Wong, L.P., Low, M.Y.H., Chong, C.S.: Bee colony optimization with local search for traveling salesman problem. In: Proceedings of the 6th IEEE International Conference on Industrial Informatics, pp. 1019–1025 (2008)Google Scholar
  10. 10.
    Elvia, R., Ramírez, A.: Optimización de Funciones de Membresía en controladores Difusos estables por medio de Algoritmos Genéticos, Tesis Maestría. Instituto Tecnológico de Tijuana (2012)Google Scholar
  11. 11.
    Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 2114–2119 (2009)Google Scholar
  12. 12.
    Lučić, P., Teodorović, D.: Transportation modeling: an artificial life approach. In: Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence, pp. 216–223, Washington (2002)Google Scholar
  13. 13.
    Neyoy, H., Castillo, O., Soria, J.: Dynamic fuzzy logic parameter tuning for ACO and its application in TSP problems. Recent Advances on Hybrid Intelligent Systems, vol. 451, pp. 259–271. Springer, Heidelberg (2013)Google Scholar
  14. 14.
    Flores Mendoza, J.I.: Propuesta de optimización mediante Cúmulos de Partículas para Espacios Restringidos, Tesis de Maestría en Ciencias de la Computación, LANIA Xalapa, Ver., Octubre (2007)Google Scholar
  15. 15.
    Amador-Angulo, L., Castillo, O., Pulido, M.: Comparison of fuzzy controllers for the water tank with type-1 and type-2 fuzzy logic. In: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013 Joint, pp. 1062–1067. IEEE, June 2013Google Scholar
  16. 16.
    Fierro, R., Castillo, O. (eds.): Design of fuzzy different PSO variants, recent advances on hybrid intelligent systems, pp. 81–88. Springer, Heidelberg (2013)Google Scholar
  17. 17.
    Karaboga, D., Akay, B., Ozturk, C.: Artificial bee colony (ABC) optimization algorithm for training feed-forward neural networks, pp. 318–329. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Tijuana Institute of TechnologyTijuanaMéxico

Personalised recommendations