Advertisement

Genetic Algorithm Optimization for Type-2 Non-singleton Fuzzy Logic Controllers

  • Ricardo Martínez-Soto
  • Oscar Castillo
  • Juan R. Castro
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 547)

Abstract

In this chapter we study the automatic design of type-2 non-singleton fuzzy logic controller. To test the controller we use an autonomous mobile robot for the trajectory tracking control. We take the basis of the interval type-2 fuzzy logic controller of previous work for the extension to the type-2 non-singleton fuzzy logic controller. A genetic algorithm is used to obtain an automatic design of the type-2 non-singleton fuzzy logic controller (NSFLC). Simulation results are obtained with Simulink showing the behavior of the mobile robot whit this type of controller.

Keywords

Type-2 non-singleton fuzzy logic controllers Genetic algorithms Autonomous mobile robot 

References

  1. 1.
    Alcalá, R., Alcalá-Fdez, J., Herrera, F.: A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection. IEEE Trans. Fuzzy Syst. 15(4), 616–635 (2007)CrossRefGoogle Scholar
  2. 2.
    Alcalá, R., Gacto, M.J., Herrera, F., Alcalá-Fdez, J.: A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems. Int. J. Uncertainty Fuzziness Knowl. based Syst. 15(5), 539–557 (2007)CrossRefMATHGoogle Scholar
  3. 3.
    Bentalba, S., El Hajjaji, A., Rachid, A.: Fuzzy control of a mobile robot: a new approach. In: Proceedings of the IEEE International Conference on Control Applications, pp. 69–72. Hartford, CT, Oct 1997Google Scholar
  4. 4.
    Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, New York (2003)CrossRefMATHGoogle Scholar
  5. 5.
    Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Millman, R.S., Sussman, H.J. (eds.) Differential Geometric Control Theory, pp. 181–191. Birkhauser, Boston (1983)Google Scholar
  6. 6.
    Casillas, J., Cordon, O., del Jesús, M.J., Herrera, F.: Genetic tuning of fuzzy rule deep structures preserving interpretability and its interaction with fuzzy rule set reduction. IEEE Trans. Fuzzy Syst. 13(1), 13–29 (2005)CrossRefGoogle Scholar
  7. 7.
    Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Processing and Pattern recognition. World Scientific, Singapore (1996)MATHGoogle Scholar
  8. 8.
    Chwa, D.: Sliding -mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Trans. Control Syst. Technol. 12(4), 633–644 (2004)MathSciNetGoogle Scholar
  9. 9.
    Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst. 141(1), 5–31 (2004)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer, Berlin (1993)CrossRefMATHGoogle Scholar
  11. 11.
    Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Networks 9(4), 589–600 (1998)CrossRefGoogle Scholar
  12. 12.
    Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Trans. Neural Networks 5(1), 3–14 (1994)CrossRefGoogle Scholar
  13. 13.
    Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Rob. Autom. 16(5), 609–615 (2000)CrossRefGoogle Scholar
  14. 14.
    Hagras, H.A.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12(4), 524–539 (2004)CrossRefGoogle Scholar
  15. 15.
    Ishikawa, S.: A method of indoor mobile robot navigation by fuzzy control. In: Proceedings of International Conference on Intelligent Robots Systems, pp. 1013–1018. Osaka, Japan (1991)Google Scholar
  16. 16.
    Karnik, N.N., Mendel, J.: Centroid of a type-2 fuzzy set. Inf. Sci. 132(1–4), 195–220 (2001)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Kristic, M., Kanellakopoulos, I., Kokotovic, P.: Nonlinear and adaptive control design, Wiley-Interscience (1995)Google Scholar
  18. 18.
    Lee, T.-C., Song, K.-T., Lee, C.-H., Teng, C–.C.: Tracking control of unicycle-modeled mobile robot using a saturation feedback controller. IEEE Trans. Control Syst. Technol. 9, 305–318 (2001)CrossRefGoogle Scholar
  19. 19.
    Lee, T.H., Leung, F.H.F., Tam, P.K.S.: Position control for wheeled mobile robot using a fuzzy controller, pp. 525–528. IEEE (1999)Google Scholar
  20. 20.
    Liang, Q., Mendel, J.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)CrossRefGoogle Scholar
  21. 21.
    Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms, pp. 5–10. Springer, Concepts Des. (2000)Google Scholar
  22. 22.
    Martinez, R., Castillo, O., Aguilar, L.T., Rodríguez, A.: Optimization of type-2 fuzzy logic controllers for mobile robots using evolutionary methods. In: Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, pp. 4909–4914. IEEE, TX, Oct (2009)Google Scholar
  23. 23.
    Martinez, R., Castillo, O., Aguilar, L.T.: Intelligent control for a perturbed autonomous wheeled mobile robot using type-2 fuzzy logic and genetic algorithms. J. Autom. Mob. Rob. Intell. Syst. 2 (2008)Google Scholar
  24. 24.
    Mendel, J., John, R.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(April), 117–127 (2002)CrossRefGoogle Scholar
  25. 25.
    Mendel, J.M., George, C.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7, 643–658 (1999)CrossRefGoogle Scholar
  26. 26.
    Mendel, J.: On a 50% savings in the computation of the centroid of a symmetrical interval type-2 fuzzy set. Inf. Sci. 172(3–4), 417–430 (2005)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Mendel, J., John, R.I.B.: Type-2 fuzzy sets made simple, IEEE Trans. Fuzzy Syst. 10(2), (2002)Google Scholar
  28. 28.
    Mendel, J.: Uncertain Rule-based Fuzzy Logic Systems. Prentice Hall (2001)Google Scholar
  29. 29.
    Passino, K.M., Yurkovich, S.: Fuzzy Control. Addison Wesley Longman, USA (1998)Google Scholar
  30. 30.
    Pawlowski, S., Dutkiewicz, P., Kozlowski, K., Wroblewski, W.: Fuzzy logic implementation in mobile robot control. In: Second Workshop on Robot Motion and Control, pp. 65–70. IEEE, Oct 2001Google Scholar
  31. 31.
    Sahab, N., Hagras, H.: A type-2 nonsingleton type-2 fuzzy logic system to handle linguis-tic and numerical uncertainties in realworld environments. IEEE Int. Symp. Adv. Type-2 Fuzzy Logic Syst. (2011)Google Scholar
  32. 32.
    Sahab, N., Hagras, H.: Adaptive non-singleton type-2 fuzzy logic systems: a way forward for handling numerical uncertainties in real world applications. Int. J. Comput. Commun. Control 5(3), 503–529 (2011) (ISSN 1841-9836)Google Scholar
  33. 33.
    Song, K.T., Sheen, L.H.: Heuristic fuzzy-neural network and its application to reactive navigation of a mobile robot. Fuzzy Sets Syst. 110(3), 331–340 (2000)CrossRefGoogle Scholar
  34. 34.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1) (1985)Google Scholar
  35. 35.
    Tsai, C.-C., Lin, H.-H., Lin, C.-C.: Trajectory tracking control of a laser-guided wheeled mobile robot. In: Proceedings of the IEEE International Conference on Control Applications, vol. 2, pp. 1055–1059. IEEE, Taipei, Sep 2004Google Scholar
  36. 36.
    Ulyanov, S.V., Watanabe, S., Yamafuji, K., Litvintseva, L.V., Rizzotto, G.G.: Soft computing for the intelligent robust control of a robotic unicycle with a new physical measure for mechanical controllability, Soft Computing, vol. 2, pp. 73–88. Springer, Berlin 1998Google Scholar
  37. 37.
    Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3(1), 28–44 (1973)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ricardo Martínez-Soto
    • 1
  • Oscar Castillo
    • 1
  • Juan R. Castro
    • 2
  1. 1.Division of Graduate Studies and ResearchTijuana Institute of TechnologyTijuanaMexico
  2. 2.School of Engineering UABC UniversityTijuanaMexico

Personalised recommendations