Social Network Analysis: A Methodology for Studying Terrorism

  • Aparna Basu
Part of the Intelligent Systems Reference Library book series (ISRL, volume 65)


This chapter aims to bring to the reader an overview of the work done since the 9/11 terrorist attack, in the field of Social Network Analysis as a tool for understanding the underlying pattern /dynamics of terrorism and terrorist networks. SNA is particularly suitable for analyzing terrorist networks as it takes relationships into account rather than merely attributes, which are difficult to obtain for covert networks. Using graph theoretic methods and measures and open source data it has been possible to map terrorist networks and examine roles of different actors, as well as identify groups and structures within the network. The methodology is illustrated by reviewing two case studies: the 9/11 terrorist network study by Krebs, that used data from a single terrorist attack, and a study by Basu that used data from about 200 terrorist incidents in India to create a network of terrorist organizations for predictive purposes.


Social Network Analysis SNA terrorist networks co-occurrence graph theory multidimensional scaling structural equivalence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Defining terrorism. Transnational Terrorism, Security and the Rule of law, European Commission Working Paper 3 (2008),
  2. 2.
    Ressler, S.: Social network analysis as an approach to combat terrorism: Past, present, and future research. Homeland Security Affairs 2(2), 1–10 (2006)Google Scholar
  3. 3.
    van der Hulst, R.C.: Terrorist networks: the threat of connectivity, The SAGE Handbook of Social Network Analysis, p. 256 (2011)Google Scholar
  4. 4.
    Krebs, V.E.: Mapping networks of terrorist cells. Connections 24(3), 43–52 (2002)Google Scholar
  5. 5.
    Basu, A.: Social network analysis of terrorist organizations in india. In: North American Association for Computational Social and Organizational Science (NAACSOS) Conference, pp. 26–28 (2005)Google Scholar
  6. 6.
    Scott, J.: Social network analysis: A Handbook. Sage Publications (1994)Google Scholar
  7. 7.
    Wasserman, S.: Social network analysis: Methods and applications. Cambridge University Press (1994)Google Scholar
  8. 8.
    Freeman, L.C.: The development of social network analysis. Empirical Press Vancouver (2004)Google Scholar
  9. 9.
    Harary, F.: Graph theory. Addison-Wesley (1969)Google Scholar
  10. 10.
    Milgram, S.: The small world problem. Psychology Today 2(1), 60–67 (1967)MathSciNetGoogle Scholar
  11. 11.
    Granovetter, M.S.: The strength of weak ties. American Journal of Sociology 78(6), 1360–1380 (1973)CrossRefGoogle Scholar
  12. 12.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  13. 13.
    Watts, D.J.: Networks, dynamics, and the small-world phenomenon 1. American Journal of Sociology 105(2), 493–527 (1999)CrossRefGoogle Scholar
  14. 14.
    Brandes, U., Erlebach, T. (eds.): Network Analysis. LNCS, vol. 3418. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Freeman, L.C.: Going the wrong way on a one-way street: Centrality in physics and biology. Journal of Social Structure 9(2) (2008)Google Scholar
  16. 16.
    Arquilla, J., Ronfeldt, D.: Networks and netwars: The future of terror, crime, and militancy. Rand Corporation (2001)Google Scholar
  17. 17.
    Sparrow, M.K.: The application of network analysis to criminal intelligence: An assessment of the prospects. Social Networks 13(3), 251–274 (1991)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Barabási, A.L., Frangos, J.: Linked: The New Science of Networks. Basic Books (2002)Google Scholar
  19. 19.
    Krebs, V.E.: Network metrics. Flow 3.0 Users’ Manual (2001)Google Scholar
  20. 20.
    Carley, K.M., Reminga, J., Kamneva, N.: Destabilizing Networks. Connections 24(3), 79–92 (2001)Google Scholar
  21. 21.
    Rothenberg, R.: From whole cloth: Making up the terrorist network. Connections 24(3), 36–42 (2001)Google Scholar
  22. 22.
    Sageman, M.: Understanding terror networks. Univ. of Pennsylvania Press (2004)Google Scholar
  23. 23.
    Rodríguez, J.A.: The th Terrorist Network: In its Weakness Lies Its Strength. In: XXV International Sunbelt Conference, Los Angeles (2005)Google Scholar
  24. 24.
    Koschade, S.: A social network analysis of Jemmah Islamiyah: The applications to counterterrorism and intelligence. Studies in Conflict & Terrorism 29(6), 559–575 (2006)CrossRefGoogle Scholar
  25. 25.
    Azad, S., Gupta, A.: A quantitative assessment on 26/11 mumbai attack using social network analysis. Journal of Terrorism Research 2(2), .4-1-4 (2011)Google Scholar
  26. 26.
    Perliger, A., Pedahzur, A.: Social network analysis in the study of terrorism and political violence. Political Science and Politics 44(1), 45 (2011)CrossRefGoogle Scholar
  27. 27.
    Dark web and geopolitical web research, AI Laboratory, University of Arizona,
  28. 28.
    National consortium for the study of terrorism and responses to terrorism (START),
  29. 29.
    Global terrorism database,
  30. 30.
  31. 31.
    Terrorism and preparedness data resource center,
  32. 32.
    Defense Intelligence Agency (USA). Criminal Network Analysis Training Course (2000)Google Scholar
  33. 33.
    Diesner, J., Carley, K.M.: Using network text analysis to detect the organizational structure of covert networks. In: Proceedings of the North American Association for Computational Social and Organizational Science (NAACSOS) Conference (2004)Google Scholar
  34. 34.
    Tsvetovat, M., Carley, K.M.: On effectiveness of wiretap programs in mapping social networks. Computational and Mathematical Organization Theory 13(1), 63–87 (2006)CrossRefGoogle Scholar
  35. 35.
    NETEST: Estimating a Terrorist Network’s Structure. In: 11th European Intelligence and Security Informatics Conference (EISIC), Athens (2011)Google Scholar
  36. 36.
    Abbasi, A., Chen, H.: Applying authorship analysis to extremist-group web forum messages. IEEE Intelligent Systems 20(5), 67–75 (2005)CrossRefGoogle Scholar
  37. 37.
    Carpenter, T., Karakostas, G., Shallcross, D.: Practical issues and algorithms for analyzing terrorist networks. In: Proceedings of the Western Simulation Multi Conference (2002)Google Scholar
  38. 38.
    Gupta, A., Kumaraguru, P.: Twitter explodes with activity in mumbai blasts! a lifeline or an unmonitored daemon in the lurking? Mumbai (2012)Google Scholar
  39. 39.
    Sliva, A., Subrahmanian, V., Martinez, V., Simari, G.I.: The soma terror organization portal (STOP): Social network and analytic tools for the real-time analysis of terror groups. In: Social Computing, Behavioral Modeling, and Prediction, pp. 9–18. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  40. 40.
    Dickerson, J.P., Mannes, A., Subrahmanian, V.: Dealing with Lashkar-e-taiba: A multi-player game-theoretic perspective. In: European Intelligence and Security Informatics Conference (EISIC), pp. 354–359. IEEE (2011)Google Scholar
  41. 41.
    Subrahmanian, V. (ed.): Handbook of Computational Approaches to Counterterrorism. Springer (2013)Google Scholar
  42. 42.
    Mannes, A.: Qualitative analysis & computational techniques for the counter-terror analyst. In: Handbook of Computational Approaches to Counterterrorism, pp. 83–97. Springer (2013)Google Scholar
  43. 43.
    Freeman, L.C.: Centrality in social networks: Conceptual clarification. Social Networks 1(3), 215–239 (1979)CrossRefGoogle Scholar
  44. 44.
    Bonacich, P.: Power and centrality: A family of measures. American Journal of Sociology 92(5), 1170–1182 (1987)CrossRefGoogle Scholar
  45. 45.
    Networks / Pajek: Program for large network analysis,
  46. 46.
    Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for windows: Software for social network analysis. Analytic Technologies, Harvard (2002)Google Scholar
  47. 47.
    Huisman, M., van Djuin, M.A.J.: A readers guide to SNA Softwares. In: Sage Handbook on Social Network Analysis, pp. 578–600 (2011)Google Scholar
  48. 48.
    Saxena, S., Santhanam, K., Basu, A.: Application of social network analysis (SNA) to terrorist networks in Jammu & Kashmir. Strategic Analysis 28(1), 84–101 (2004)CrossRefGoogle Scholar
  49. 49.
    The hijackers.... and how they were connected, Sydney Morning Herald (Septembr 22, 2001),
  50. 50.
    Erickson, B.H.: Secret societies and social structure. Social Forces 60(1), 188–210 (1981)MathSciNetGoogle Scholar
  51. 51.
    The Plot: A Web of Connections, Washington Post (September 24, 2001),
  52. 52.
    Indictment of Zacarias Moussaoui. U.S. Department of Justice (December 11, 2001),
  53. 53.
    Friedkin, N.E.: Horizons of observability and limits of informal control in organizations. Social Forces 62(1), 54–77 (1983)Google Scholar
  54. 54.
    Transcript of bin Laden Video Tape, United States Department of Defense (December 13, 2001),
  55. 55.
    Morselli, C., Giguère, C., Petit, K.: The efficiency/security trade-off in criminal networks. Social Networks 29(1), 143–153 (2007)CrossRefGoogle Scholar
  56. 56.
    Borgatti, S.P.: Identifying sets of key players in a social network. Computational & Mathematical Organization Theory 12(1), 21–34 (2006)CrossRefMATHGoogle Scholar
  57. 57.
    Borgatti, S.P., Carley, K.M., Krackhardt, D.: On the robustness of centrality measures under conditions of imperfect data. Social Networks 28(2), 124–136 (2006)CrossRefGoogle Scholar
  58. 58.
    Latora, V., Marchiori, M.: How the science of complex networks can help developing strategies against terrorism. Chaos, Solitons & Fractals 20(1), 69–75 (2004)CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    Krebs, V.: Uncloaking terrorist networks. First Monday 7(4) (2002)Google Scholar
  60. 60.
    Chellaney, B.: Fighting terrorism in southern asia: The lessons of history. International Security 26(3) (2001)Google Scholar
  61. 61.
  62. 62.
    CNN: Suspected hijack bankroller freed by india in 1999 (2001),
  63. 63.
    Saxena, S., Santhanam, K.: Design approach to creating a terrorism database with open source information. IDSA Internal Report (2001)Google Scholar
  64. 64.
    Santhanam, K.: Jihadis in Jammu and Kashmir: A Portrait Gallery. Sage (2003)Google Scholar
  65. 65.
    Leydesdorff, L., Vaughan, L.: Co-occurrence matrices and their applications in information science: Extending ACA to the web environment. Journal of the American Society for Information Science and Technology 57(12), 1616–1628 (2006)CrossRefGoogle Scholar
  66. 66.
    Pitel, G., Millet, C., Grefenstette, G.: Deriving a priori co-occurrence probability estimates for object recognition from social networks and text processing. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part II. LNCS, vol. 4842, pp. 509–518. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  67. 67.
    Brandes, U., Wagner, D.: Analysis and visualization of social networks. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, pp. 321–340. Springer, Heidelberg (2003)Google Scholar
  68. 68.
    Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for windows: Software for social network analysis. Harvard Analytic Technologies (2002)Google Scholar
  69. 69.
    Lorrain, F., White, H.C.: Structural equivalence of individuals in social networks. The Journal of Mathematical Sociology 1(1), 49–80 (1971)CrossRefGoogle Scholar
  70. 70.
    Faust, K., Wasserman, S.: Blockmodels: Interpretation and evaluation. Social Networks 14(1), 5–61 (1992)CrossRefGoogle Scholar
  71. 71.
    Moody, J., White, D.R.: Structural cohesion and embeddedness: A hierarchical concept of social groups. American Sociological Review, 103–127 (2000)Google Scholar
  72. 72.
    Kruskal, J., Wish, M.: Multidimensional scaling. Sage (1978)Google Scholar
  73. 73.
    Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applications. Springer (2005)Google Scholar
  74. 74.
    Breiger, R.L., Boorman, S.A., Arabie, P.: An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling. Journal of Mathematical Psychology 12(3), 328–383 (1975)CrossRefGoogle Scholar
  75. 75.
    Bhalla, A.: India submits proof that Pakistan funds terror activities, builds international pressure for action, India Today (2013),
  76. 76.
    Pakistan Intelligence services aided Mumbai terror attacks. The Guradian (October 18, 2010),

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.CSIR-National Institute of Science Technology and Development Studies, and Dr. K.S. Krishnan MargNew DelhiIndia

Personalised recommendations